Image of a Point in a Line
Straight Line

88774 If \(A(4,3,2), B(5,4,6), C(-1,-1,5)\) are vertices of a triangle, then the coordinates of the point in which the bisector of the angle \(A\) meet the side \(B C\) is

1 \(\left(\frac{22}{8}, \frac{17}{8}, \frac{45}{8}\right)\)
2 \(\left(\frac{17}{8}, \frac{22}{8}, \frac{45}{8}\right)\)
3 \(\left(\frac{-22}{8}, \frac{-17}{8}, \frac{45}{8}\right)\)
4 \(\left(\frac{-17}{8}, \frac{22}{8}, \frac{45}{8}\right)\)
Straight Line

88775 Let \(P\) be the point of intersection of the lines \(\mathrm{L}_{1} \equiv \mathrm{x}-\mathrm{y}-\mathbf{7}=\mathbf{0}\) and \(\mathrm{L}_{2} \equiv \mathrm{x}+\mathrm{y}-\mathbf{5}=\mathbf{0} . \mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) and \(B\left(x_{2}, y_{2}\right)\) are points on the lines \(l_{1}=0\) and \(l_{2}\) \(=0\) respectively such that \(P A=3 \sqrt{2}, P B=\) \(\sqrt{2}, x_{1}, y_{1} \geq 0, x_{2} y_{2} \geq 0\), then the angle made by the line segment \(A B\) at the origin is

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\cos ^{-1}\left(\frac{3}{4}\right)\)
4 \(\cos ^{-1}\left(\frac{9}{\sqrt{85}}\right)\)
Straight Line

88776 A bisector of the angle between the normal's of the planes \(4 x+3 y=5\) and \(x+2 y+2 z=4\) is along the vector

1 \((17 \hat{\mathrm{i}}+9 \hat{\mathrm{j}}-12 \hat{\mathrm{k}})\)
2 \((17 \hat{i}-9 \hat{j}+12 \hat{k})\)
3 \((17 \hat{\mathrm{i}}-\hat{\mathrm{j}}+10 \hat{\mathrm{k}})\)
4 \((7 \hat{\mathrm{i}}-\hat{\mathrm{j}}-10 \hat{\mathrm{k}})\)
Straight Line

88777 If the vertices of a triangle \(\mathrm{ABC}\) are \(\mathrm{A}(1,7), \mathrm{B}\) \((-5,-1)\) and \(C(7,4)\), then the equation of a bisector of \(\triangle \mathrm{ABC}\) is

1 \(7 x-9 y+26=0\)
2 \(9 x-7 y+38=0\)
3 \(7 x+9 y+44=0\)
4 \(9 x+7 y+52=0\)
Straight Line

88774 If \(A(4,3,2), B(5,4,6), C(-1,-1,5)\) are vertices of a triangle, then the coordinates of the point in which the bisector of the angle \(A\) meet the side \(B C\) is

1 \(\left(\frac{22}{8}, \frac{17}{8}, \frac{45}{8}\right)\)
2 \(\left(\frac{17}{8}, \frac{22}{8}, \frac{45}{8}\right)\)
3 \(\left(\frac{-22}{8}, \frac{-17}{8}, \frac{45}{8}\right)\)
4 \(\left(\frac{-17}{8}, \frac{22}{8}, \frac{45}{8}\right)\)
Straight Line

88775 Let \(P\) be the point of intersection of the lines \(\mathrm{L}_{1} \equiv \mathrm{x}-\mathrm{y}-\mathbf{7}=\mathbf{0}\) and \(\mathrm{L}_{2} \equiv \mathrm{x}+\mathrm{y}-\mathbf{5}=\mathbf{0} . \mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) and \(B\left(x_{2}, y_{2}\right)\) are points on the lines \(l_{1}=0\) and \(l_{2}\) \(=0\) respectively such that \(P A=3 \sqrt{2}, P B=\) \(\sqrt{2}, x_{1}, y_{1} \geq 0, x_{2} y_{2} \geq 0\), then the angle made by the line segment \(A B\) at the origin is

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\cos ^{-1}\left(\frac{3}{4}\right)\)
4 \(\cos ^{-1}\left(\frac{9}{\sqrt{85}}\right)\)
Straight Line

88776 A bisector of the angle between the normal's of the planes \(4 x+3 y=5\) and \(x+2 y+2 z=4\) is along the vector

1 \((17 \hat{\mathrm{i}}+9 \hat{\mathrm{j}}-12 \hat{\mathrm{k}})\)
2 \((17 \hat{i}-9 \hat{j}+12 \hat{k})\)
3 \((17 \hat{\mathrm{i}}-\hat{\mathrm{j}}+10 \hat{\mathrm{k}})\)
4 \((7 \hat{\mathrm{i}}-\hat{\mathrm{j}}-10 \hat{\mathrm{k}})\)
Straight Line

88777 If the vertices of a triangle \(\mathrm{ABC}\) are \(\mathrm{A}(1,7), \mathrm{B}\) \((-5,-1)\) and \(C(7,4)\), then the equation of a bisector of \(\triangle \mathrm{ABC}\) is

1 \(7 x-9 y+26=0\)
2 \(9 x-7 y+38=0\)
3 \(7 x+9 y+44=0\)
4 \(9 x+7 y+52=0\)
Straight Line

88774 If \(A(4,3,2), B(5,4,6), C(-1,-1,5)\) are vertices of a triangle, then the coordinates of the point in which the bisector of the angle \(A\) meet the side \(B C\) is

1 \(\left(\frac{22}{8}, \frac{17}{8}, \frac{45}{8}\right)\)
2 \(\left(\frac{17}{8}, \frac{22}{8}, \frac{45}{8}\right)\)
3 \(\left(\frac{-22}{8}, \frac{-17}{8}, \frac{45}{8}\right)\)
4 \(\left(\frac{-17}{8}, \frac{22}{8}, \frac{45}{8}\right)\)
Straight Line

88775 Let \(P\) be the point of intersection of the lines \(\mathrm{L}_{1} \equiv \mathrm{x}-\mathrm{y}-\mathbf{7}=\mathbf{0}\) and \(\mathrm{L}_{2} \equiv \mathrm{x}+\mathrm{y}-\mathbf{5}=\mathbf{0} . \mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) and \(B\left(x_{2}, y_{2}\right)\) are points on the lines \(l_{1}=0\) and \(l_{2}\) \(=0\) respectively such that \(P A=3 \sqrt{2}, P B=\) \(\sqrt{2}, x_{1}, y_{1} \geq 0, x_{2} y_{2} \geq 0\), then the angle made by the line segment \(A B\) at the origin is

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\cos ^{-1}\left(\frac{3}{4}\right)\)
4 \(\cos ^{-1}\left(\frac{9}{\sqrt{85}}\right)\)
Straight Line

88776 A bisector of the angle between the normal's of the planes \(4 x+3 y=5\) and \(x+2 y+2 z=4\) is along the vector

1 \((17 \hat{\mathrm{i}}+9 \hat{\mathrm{j}}-12 \hat{\mathrm{k}})\)
2 \((17 \hat{i}-9 \hat{j}+12 \hat{k})\)
3 \((17 \hat{\mathrm{i}}-\hat{\mathrm{j}}+10 \hat{\mathrm{k}})\)
4 \((7 \hat{\mathrm{i}}-\hat{\mathrm{j}}-10 \hat{\mathrm{k}})\)
Straight Line

88777 If the vertices of a triangle \(\mathrm{ABC}\) are \(\mathrm{A}(1,7), \mathrm{B}\) \((-5,-1)\) and \(C(7,4)\), then the equation of a bisector of \(\triangle \mathrm{ABC}\) is

1 \(7 x-9 y+26=0\)
2 \(9 x-7 y+38=0\)
3 \(7 x+9 y+44=0\)
4 \(9 x+7 y+52=0\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Straight Line

88774 If \(A(4,3,2), B(5,4,6), C(-1,-1,5)\) are vertices of a triangle, then the coordinates of the point in which the bisector of the angle \(A\) meet the side \(B C\) is

1 \(\left(\frac{22}{8}, \frac{17}{8}, \frac{45}{8}\right)\)
2 \(\left(\frac{17}{8}, \frac{22}{8}, \frac{45}{8}\right)\)
3 \(\left(\frac{-22}{8}, \frac{-17}{8}, \frac{45}{8}\right)\)
4 \(\left(\frac{-17}{8}, \frac{22}{8}, \frac{45}{8}\right)\)
Straight Line

88775 Let \(P\) be the point of intersection of the lines \(\mathrm{L}_{1} \equiv \mathrm{x}-\mathrm{y}-\mathbf{7}=\mathbf{0}\) and \(\mathrm{L}_{2} \equiv \mathrm{x}+\mathrm{y}-\mathbf{5}=\mathbf{0} . \mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\) and \(B\left(x_{2}, y_{2}\right)\) are points on the lines \(l_{1}=0\) and \(l_{2}\) \(=0\) respectively such that \(P A=3 \sqrt{2}, P B=\) \(\sqrt{2}, x_{1}, y_{1} \geq 0, x_{2} y_{2} \geq 0\), then the angle made by the line segment \(A B\) at the origin is

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\cos ^{-1}\left(\frac{3}{4}\right)\)
4 \(\cos ^{-1}\left(\frac{9}{\sqrt{85}}\right)\)
Straight Line

88776 A bisector of the angle between the normal's of the planes \(4 x+3 y=5\) and \(x+2 y+2 z=4\) is along the vector

1 \((17 \hat{\mathrm{i}}+9 \hat{\mathrm{j}}-12 \hat{\mathrm{k}})\)
2 \((17 \hat{i}-9 \hat{j}+12 \hat{k})\)
3 \((17 \hat{\mathrm{i}}-\hat{\mathrm{j}}+10 \hat{\mathrm{k}})\)
4 \((7 \hat{\mathrm{i}}-\hat{\mathrm{j}}-10 \hat{\mathrm{k}})\)
Straight Line

88777 If the vertices of a triangle \(\mathrm{ABC}\) are \(\mathrm{A}(1,7), \mathrm{B}\) \((-5,-1)\) and \(C(7,4)\), then the equation of a bisector of \(\triangle \mathrm{ABC}\) is

1 \(7 x-9 y+26=0\)
2 \(9 x-7 y+38=0\)
3 \(7 x+9 y+44=0\)
4 \(9 x+7 y+52=0\)