Equation of Straight Line in Symmetric and Other Forms
Straight Line

88733 The equations of the lines on which the perpendiculars from the origin make \(30^{\circ}\) angle with \(x\)-axis and which form a triangle of area \(\frac{50}{\sqrt{3}}\) with axes, are

1 \(x+\sqrt{3} y \pm 10=0\)
2 \(\sqrt{3} x+y \pm 10=0\)
3 \(x \pm \sqrt{3} y-10=0\)
4 None of above
Straight Line

88734 If the line \(p x-q y=r\) intersects the coordinate axes at \((a, 0)\) and \((0, b)\) then the value of \((a+b)\) is equal to

1 \(\frac{r(q+p)}{p q}\)
2 \(\frac{r(q-p)}{p q}\)
3 \(\frac{\mathrm{r}(\mathrm{p}-\mathrm{q})}{\mathrm{pq}}\)
4 \(\frac{\mathrm{r}(\mathrm{p}-\mathrm{q})}{\mathrm{p}+\mathrm{q}}\)
Straight Line

88735 if \(2 a+3 b+6 c=0\), then the equation \(a x^{2}+b x+\) \(\mathbf{c}=0\) has at least one real root in

1 \((0,1)\)
2 \(\left(0, \frac{1}{2}\right)\)
3 \(\left(\frac{1}{4}, \frac{1}{2}\right)\)
4 None of these
Straight Line

88736 The equations of the lines passing through the point
\((1,0)\) and at a distance \(\frac{\sqrt{3}}{2}\) from the origin are

1 \(\sqrt{3} x+y-\sqrt{3}=0, \sqrt{3} x-y-\sqrt{3}=0\)
2 \(\sqrt{3} x+y+\sqrt{3}=0, \sqrt{3} x-y+\sqrt{3}=0\)
3 \(x+\sqrt{3} y-\sqrt{3}=0, x-\sqrt{3} y-\sqrt{3}=0\)
4 None of the above
Straight Line

88733 The equations of the lines on which the perpendiculars from the origin make \(30^{\circ}\) angle with \(x\)-axis and which form a triangle of area \(\frac{50}{\sqrt{3}}\) with axes, are

1 \(x+\sqrt{3} y \pm 10=0\)
2 \(\sqrt{3} x+y \pm 10=0\)
3 \(x \pm \sqrt{3} y-10=0\)
4 None of above
Straight Line

88734 If the line \(p x-q y=r\) intersects the coordinate axes at \((a, 0)\) and \((0, b)\) then the value of \((a+b)\) is equal to

1 \(\frac{r(q+p)}{p q}\)
2 \(\frac{r(q-p)}{p q}\)
3 \(\frac{\mathrm{r}(\mathrm{p}-\mathrm{q})}{\mathrm{pq}}\)
4 \(\frac{\mathrm{r}(\mathrm{p}-\mathrm{q})}{\mathrm{p}+\mathrm{q}}\)
Straight Line

88735 if \(2 a+3 b+6 c=0\), then the equation \(a x^{2}+b x+\) \(\mathbf{c}=0\) has at least one real root in

1 \((0,1)\)
2 \(\left(0, \frac{1}{2}\right)\)
3 \(\left(\frac{1}{4}, \frac{1}{2}\right)\)
4 None of these
Straight Line

88736 The equations of the lines passing through the point
\((1,0)\) and at a distance \(\frac{\sqrt{3}}{2}\) from the origin are

1 \(\sqrt{3} x+y-\sqrt{3}=0, \sqrt{3} x-y-\sqrt{3}=0\)
2 \(\sqrt{3} x+y+\sqrt{3}=0, \sqrt{3} x-y+\sqrt{3}=0\)
3 \(x+\sqrt{3} y-\sqrt{3}=0, x-\sqrt{3} y-\sqrt{3}=0\)
4 None of the above
Straight Line

88733 The equations of the lines on which the perpendiculars from the origin make \(30^{\circ}\) angle with \(x\)-axis and which form a triangle of area \(\frac{50}{\sqrt{3}}\) with axes, are

1 \(x+\sqrt{3} y \pm 10=0\)
2 \(\sqrt{3} x+y \pm 10=0\)
3 \(x \pm \sqrt{3} y-10=0\)
4 None of above
Straight Line

88734 If the line \(p x-q y=r\) intersects the coordinate axes at \((a, 0)\) and \((0, b)\) then the value of \((a+b)\) is equal to

1 \(\frac{r(q+p)}{p q}\)
2 \(\frac{r(q-p)}{p q}\)
3 \(\frac{\mathrm{r}(\mathrm{p}-\mathrm{q})}{\mathrm{pq}}\)
4 \(\frac{\mathrm{r}(\mathrm{p}-\mathrm{q})}{\mathrm{p}+\mathrm{q}}\)
Straight Line

88735 if \(2 a+3 b+6 c=0\), then the equation \(a x^{2}+b x+\) \(\mathbf{c}=0\) has at least one real root in

1 \((0,1)\)
2 \(\left(0, \frac{1}{2}\right)\)
3 \(\left(\frac{1}{4}, \frac{1}{2}\right)\)
4 None of these
Straight Line

88736 The equations of the lines passing through the point
\((1,0)\) and at a distance \(\frac{\sqrt{3}}{2}\) from the origin are

1 \(\sqrt{3} x+y-\sqrt{3}=0, \sqrt{3} x-y-\sqrt{3}=0\)
2 \(\sqrt{3} x+y+\sqrt{3}=0, \sqrt{3} x-y+\sqrt{3}=0\)
3 \(x+\sqrt{3} y-\sqrt{3}=0, x-\sqrt{3} y-\sqrt{3}=0\)
4 None of the above
Straight Line

88733 The equations of the lines on which the perpendiculars from the origin make \(30^{\circ}\) angle with \(x\)-axis and which form a triangle of area \(\frac{50}{\sqrt{3}}\) with axes, are

1 \(x+\sqrt{3} y \pm 10=0\)
2 \(\sqrt{3} x+y \pm 10=0\)
3 \(x \pm \sqrt{3} y-10=0\)
4 None of above
Straight Line

88734 If the line \(p x-q y=r\) intersects the coordinate axes at \((a, 0)\) and \((0, b)\) then the value of \((a+b)\) is equal to

1 \(\frac{r(q+p)}{p q}\)
2 \(\frac{r(q-p)}{p q}\)
3 \(\frac{\mathrm{r}(\mathrm{p}-\mathrm{q})}{\mathrm{pq}}\)
4 \(\frac{\mathrm{r}(\mathrm{p}-\mathrm{q})}{\mathrm{p}+\mathrm{q}}\)
Straight Line

88735 if \(2 a+3 b+6 c=0\), then the equation \(a x^{2}+b x+\) \(\mathbf{c}=0\) has at least one real root in

1 \((0,1)\)
2 \(\left(0, \frac{1}{2}\right)\)
3 \(\left(\frac{1}{4}, \frac{1}{2}\right)\)
4 None of these
Straight Line

88736 The equations of the lines passing through the point
\((1,0)\) and at a distance \(\frac{\sqrt{3}}{2}\) from the origin are

1 \(\sqrt{3} x+y-\sqrt{3}=0, \sqrt{3} x-y-\sqrt{3}=0\)
2 \(\sqrt{3} x+y+\sqrt{3}=0, \sqrt{3} x-y+\sqrt{3}=0\)
3 \(x+\sqrt{3} y-\sqrt{3}=0, x-\sqrt{3} y-\sqrt{3}=0\)
4 None of the above