88584
Given the LPP Minimize \(f=2 x_{1}-x_{2}\)
\(\mathbf{x}_{1} \geq \mathbf{0}, \mathbf{x}_{2} \geq \mathbf{0}\)
\(\mathbf{x}_{1}+\mathbf{x}_{2} \geq \mathbf{5}\)
\(-\mathbf{x}_{1}+\mathbf{x}_{2} \leq \mathbf{1}\)
\(\mathbf{5} x_{1}+\mathbf{4} x_{2} \leq \mathbf{4 0}\)
The solution is
88584
Given the LPP Minimize \(f=2 x_{1}-x_{2}\)
\(\mathbf{x}_{1} \geq \mathbf{0}, \mathbf{x}_{2} \geq \mathbf{0}\)
\(\mathbf{x}_{1}+\mathbf{x}_{2} \geq \mathbf{5}\)
\(-\mathbf{x}_{1}+\mathbf{x}_{2} \leq \mathbf{1}\)
\(\mathbf{5} x_{1}+\mathbf{4} x_{2} \leq \mathbf{4 0}\)
The solution is
88584
Given the LPP Minimize \(f=2 x_{1}-x_{2}\)
\(\mathbf{x}_{1} \geq \mathbf{0}, \mathbf{x}_{2} \geq \mathbf{0}\)
\(\mathbf{x}_{1}+\mathbf{x}_{2} \geq \mathbf{5}\)
\(-\mathbf{x}_{1}+\mathbf{x}_{2} \leq \mathbf{1}\)
\(\mathbf{5} x_{1}+\mathbf{4} x_{2} \leq \mathbf{4 0}\)
The solution is
88584
Given the LPP Minimize \(f=2 x_{1}-x_{2}\)
\(\mathbf{x}_{1} \geq \mathbf{0}, \mathbf{x}_{2} \geq \mathbf{0}\)
\(\mathbf{x}_{1}+\mathbf{x}_{2} \geq \mathbf{5}\)
\(-\mathbf{x}_{1}+\mathbf{x}_{2} \leq \mathbf{1}\)
\(\mathbf{5} x_{1}+\mathbf{4} x_{2} \leq \mathbf{4 0}\)
The solution is