Graphical Solution of Linear Inequalities of Two Variables
Linear Inequalities and Linear Programming

88560 Shaded region is represented by

1 \(2 x+5 y \geq 80, x+y \leq 20, x \geq 0, y \leq 0\)
2 \(2 x+5 y \geq 80, x+y \geq 20, x \geq 0, y \geq 0\)
3 \(2 x+5 y \leq 80, x+y \leq 20, x \geq 0, y \geq 0\)
4 \(2 x+5 y \leq 80, x+y \leq 20, x \leq 0, y \leq 0\)
Linear Inequalities and Linear Programming

88561 The maximum value of \(Z=4 x+y\) subject to the constraints, \(x+y \leq 50,3 x+y \leq 90, x \geq 0, y\) \(\geq 0\) is

1 40
2 130
3 120
4 50
Linear Inequalities and Linear Programming

88563 The minimum value of the expression \(\frac{3 b+4 c}{a}+\frac{4 c+a}{3 b}+\frac{a+3 b}{4 c}(a, b, c\) are \(+v e)\) is

1 1
2 4
3 6
4 8
Linear Inequalities and Linear Programming

88564 The solution set of the inequality
\(\log _{\sin (\pi / 3)}\left(\mathrm{x}^{2}-3 \mathrm{x}+2\right) \geq 2\) is

1 \(\left(\frac{1}{2}, 2\right)\)
2 \(\left[\frac{1}{2}, 2\right]\)
3 \(\left[\frac{1}{2}, 1\right) \cup\left(2, \frac{5}{2}\right]\)
4 \(\left(\frac{1}{2}, \frac{5}{2}\right)\)
Linear Inequalities and Linear Programming

88560 Shaded region is represented by

1 \(2 x+5 y \geq 80, x+y \leq 20, x \geq 0, y \leq 0\)
2 \(2 x+5 y \geq 80, x+y \geq 20, x \geq 0, y \geq 0\)
3 \(2 x+5 y \leq 80, x+y \leq 20, x \geq 0, y \geq 0\)
4 \(2 x+5 y \leq 80, x+y \leq 20, x \leq 0, y \leq 0\)
Linear Inequalities and Linear Programming

88561 The maximum value of \(Z=4 x+y\) subject to the constraints, \(x+y \leq 50,3 x+y \leq 90, x \geq 0, y\) \(\geq 0\) is

1 40
2 130
3 120
4 50
Linear Inequalities and Linear Programming

88563 The minimum value of the expression \(\frac{3 b+4 c}{a}+\frac{4 c+a}{3 b}+\frac{a+3 b}{4 c}(a, b, c\) are \(+v e)\) is

1 1
2 4
3 6
4 8
Linear Inequalities and Linear Programming

88564 The solution set of the inequality
\(\log _{\sin (\pi / 3)}\left(\mathrm{x}^{2}-3 \mathrm{x}+2\right) \geq 2\) is

1 \(\left(\frac{1}{2}, 2\right)\)
2 \(\left[\frac{1}{2}, 2\right]\)
3 \(\left[\frac{1}{2}, 1\right) \cup\left(2, \frac{5}{2}\right]\)
4 \(\left(\frac{1}{2}, \frac{5}{2}\right)\)
Linear Inequalities and Linear Programming

88560 Shaded region is represented by

1 \(2 x+5 y \geq 80, x+y \leq 20, x \geq 0, y \leq 0\)
2 \(2 x+5 y \geq 80, x+y \geq 20, x \geq 0, y \geq 0\)
3 \(2 x+5 y \leq 80, x+y \leq 20, x \geq 0, y \geq 0\)
4 \(2 x+5 y \leq 80, x+y \leq 20, x \leq 0, y \leq 0\)
Linear Inequalities and Linear Programming

88561 The maximum value of \(Z=4 x+y\) subject to the constraints, \(x+y \leq 50,3 x+y \leq 90, x \geq 0, y\) \(\geq 0\) is

1 40
2 130
3 120
4 50
Linear Inequalities and Linear Programming

88563 The minimum value of the expression \(\frac{3 b+4 c}{a}+\frac{4 c+a}{3 b}+\frac{a+3 b}{4 c}(a, b, c\) are \(+v e)\) is

1 1
2 4
3 6
4 8
Linear Inequalities and Linear Programming

88564 The solution set of the inequality
\(\log _{\sin (\pi / 3)}\left(\mathrm{x}^{2}-3 \mathrm{x}+2\right) \geq 2\) is

1 \(\left(\frac{1}{2}, 2\right)\)
2 \(\left[\frac{1}{2}, 2\right]\)
3 \(\left[\frac{1}{2}, 1\right) \cup\left(2, \frac{5}{2}\right]\)
4 \(\left(\frac{1}{2}, \frac{5}{2}\right)\)
Linear Inequalities and Linear Programming

88560 Shaded region is represented by

1 \(2 x+5 y \geq 80, x+y \leq 20, x \geq 0, y \leq 0\)
2 \(2 x+5 y \geq 80, x+y \geq 20, x \geq 0, y \geq 0\)
3 \(2 x+5 y \leq 80, x+y \leq 20, x \geq 0, y \geq 0\)
4 \(2 x+5 y \leq 80, x+y \leq 20, x \leq 0, y \leq 0\)
Linear Inequalities and Linear Programming

88561 The maximum value of \(Z=4 x+y\) subject to the constraints, \(x+y \leq 50,3 x+y \leq 90, x \geq 0, y\) \(\geq 0\) is

1 40
2 130
3 120
4 50
Linear Inequalities and Linear Programming

88563 The minimum value of the expression \(\frac{3 b+4 c}{a}+\frac{4 c+a}{3 b}+\frac{a+3 b}{4 c}(a, b, c\) are \(+v e)\) is

1 1
2 4
3 6
4 8
Linear Inequalities and Linear Programming

88564 The solution set of the inequality
\(\log _{\sin (\pi / 3)}\left(\mathrm{x}^{2}-3 \mathrm{x}+2\right) \geq 2\) is

1 \(\left(\frac{1}{2}, 2\right)\)
2 \(\left[\frac{1}{2}, 2\right]\)
3 \(\left[\frac{1}{2}, 1\right) \cup\left(2, \frac{5}{2}\right]\)
4 \(\left(\frac{1}{2}, \frac{5}{2}\right)\)