Graphical Solution of Linear Inequalities of Two Variables
Linear Inequalities and Linear Programming

88547 Maximum value of \(z=4 x+5 y\) subject to \(y \leq 2 x, x \leq 2 y, x+y \leq 3, x \geq 0, y \geq 0\) is

1 14
2 20
3 28
4 13
Linear Inequalities and Linear Programming

88548 the maximum value of \(z=2 x+3 y\) subject to \(\mathbf{x} \geq \mathbf{1}, \mathrm{y} \leq \mathbf{2}, \mathrm{x}+\mathrm{y} \leq \mathbf{3}, \mathrm{y} \geq \mathbf{0}\)

1 2
2 8
3 9
4 5
Linear Inequalities and Linear Programming

88549 The maximum value of \(z=10 x+y\) subject to \(x \leq 4, y \leq 6, x+y \leq 6, x \geq 6, x \geq 0, y \geq 0\) is

1 6
2 40
3 56
4 42
Linear Inequalities and Linear Programming

88550 The minimum value of \(z=6 x+2 y\) subject to the constraints \(5 x+9 y \leq 90, x+y \geq 4, x, y \geq 0\) is

1 8
2 20
3 108
4 24
Linear Inequalities and Linear Programming

88551 If \(z=7 x+y\) subject to \(5 x+y \geq 5, x+y \geq 3\), \(x\) \(\geq 0, y \geq 0\) then minimum value of \(z\) is

1 5
2 2
3 6
4 3
Linear Inequalities and Linear Programming

88547 Maximum value of \(z=4 x+5 y\) subject to \(y \leq 2 x, x \leq 2 y, x+y \leq 3, x \geq 0, y \geq 0\) is

1 14
2 20
3 28
4 13
Linear Inequalities and Linear Programming

88548 the maximum value of \(z=2 x+3 y\) subject to \(\mathbf{x} \geq \mathbf{1}, \mathrm{y} \leq \mathbf{2}, \mathrm{x}+\mathrm{y} \leq \mathbf{3}, \mathrm{y} \geq \mathbf{0}\)

1 2
2 8
3 9
4 5
Linear Inequalities and Linear Programming

88549 The maximum value of \(z=10 x+y\) subject to \(x \leq 4, y \leq 6, x+y \leq 6, x \geq 6, x \geq 0, y \geq 0\) is

1 6
2 40
3 56
4 42
Linear Inequalities and Linear Programming

88550 The minimum value of \(z=6 x+2 y\) subject to the constraints \(5 x+9 y \leq 90, x+y \geq 4, x, y \geq 0\) is

1 8
2 20
3 108
4 24
Linear Inequalities and Linear Programming

88551 If \(z=7 x+y\) subject to \(5 x+y \geq 5, x+y \geq 3\), \(x\) \(\geq 0, y \geq 0\) then minimum value of \(z\) is

1 5
2 2
3 6
4 3
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Linear Inequalities and Linear Programming

88547 Maximum value of \(z=4 x+5 y\) subject to \(y \leq 2 x, x \leq 2 y, x+y \leq 3, x \geq 0, y \geq 0\) is

1 14
2 20
3 28
4 13
Linear Inequalities and Linear Programming

88548 the maximum value of \(z=2 x+3 y\) subject to \(\mathbf{x} \geq \mathbf{1}, \mathrm{y} \leq \mathbf{2}, \mathrm{x}+\mathrm{y} \leq \mathbf{3}, \mathrm{y} \geq \mathbf{0}\)

1 2
2 8
3 9
4 5
Linear Inequalities and Linear Programming

88549 The maximum value of \(z=10 x+y\) subject to \(x \leq 4, y \leq 6, x+y \leq 6, x \geq 6, x \geq 0, y \geq 0\) is

1 6
2 40
3 56
4 42
Linear Inequalities and Linear Programming

88550 The minimum value of \(z=6 x+2 y\) subject to the constraints \(5 x+9 y \leq 90, x+y \geq 4, x, y \geq 0\) is

1 8
2 20
3 108
4 24
Linear Inequalities and Linear Programming

88551 If \(z=7 x+y\) subject to \(5 x+y \geq 5, x+y \geq 3\), \(x\) \(\geq 0, y \geq 0\) then minimum value of \(z\) is

1 5
2 2
3 6
4 3
Linear Inequalities and Linear Programming

88547 Maximum value of \(z=4 x+5 y\) subject to \(y \leq 2 x, x \leq 2 y, x+y \leq 3, x \geq 0, y \geq 0\) is

1 14
2 20
3 28
4 13
Linear Inequalities and Linear Programming

88548 the maximum value of \(z=2 x+3 y\) subject to \(\mathbf{x} \geq \mathbf{1}, \mathrm{y} \leq \mathbf{2}, \mathrm{x}+\mathrm{y} \leq \mathbf{3}, \mathrm{y} \geq \mathbf{0}\)

1 2
2 8
3 9
4 5
Linear Inequalities and Linear Programming

88549 The maximum value of \(z=10 x+y\) subject to \(x \leq 4, y \leq 6, x+y \leq 6, x \geq 6, x \geq 0, y \geq 0\) is

1 6
2 40
3 56
4 42
Linear Inequalities and Linear Programming

88550 The minimum value of \(z=6 x+2 y\) subject to the constraints \(5 x+9 y \leq 90, x+y \geq 4, x, y \geq 0\) is

1 8
2 20
3 108
4 24
Linear Inequalities and Linear Programming

88551 If \(z=7 x+y\) subject to \(5 x+y \geq 5, x+y \geq 3\), \(x\) \(\geq 0, y \geq 0\) then minimum value of \(z\) is

1 5
2 2
3 6
4 3
Linear Inequalities and Linear Programming

88547 Maximum value of \(z=4 x+5 y\) subject to \(y \leq 2 x, x \leq 2 y, x+y \leq 3, x \geq 0, y \geq 0\) is

1 14
2 20
3 28
4 13
Linear Inequalities and Linear Programming

88548 the maximum value of \(z=2 x+3 y\) subject to \(\mathbf{x} \geq \mathbf{1}, \mathrm{y} \leq \mathbf{2}, \mathrm{x}+\mathrm{y} \leq \mathbf{3}, \mathrm{y} \geq \mathbf{0}\)

1 2
2 8
3 9
4 5
Linear Inequalities and Linear Programming

88549 The maximum value of \(z=10 x+y\) subject to \(x \leq 4, y \leq 6, x+y \leq 6, x \geq 6, x \geq 0, y \geq 0\) is

1 6
2 40
3 56
4 42
Linear Inequalities and Linear Programming

88550 The minimum value of \(z=6 x+2 y\) subject to the constraints \(5 x+9 y \leq 90, x+y \geq 4, x, y \geq 0\) is

1 8
2 20
3 108
4 24
Linear Inequalities and Linear Programming

88551 If \(z=7 x+y\) subject to \(5 x+y \geq 5, x+y \geq 3\), \(x\) \(\geq 0, y \geq 0\) then minimum value of \(z\) is

1 5
2 2
3 6
4 3