Graphical Solution of Linear Inequalities of Two Variables
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Linear Inequalities and Linear Programming

88543 The maximum value \(z=6 x+8 y\) subject to \(x-y \geq 0, x+3 y \leq 12, x \geq 0, y \geq 0\) is

1 42
2 72
3 24
4 96
Linear Inequalities and Linear Programming

88544 If \(z=a x+b y ; a, b>0\) subject to \(x \leq 2, y \leq 2, x\) \(+\mathbf{y} \geq \mathbf{3}, \mathbf{x} \geq \mathbf{0}, \mathrm{y} \geq \mathbf{0}\) has minimum value at \((2,1)\) only, then

1 \(a\lt b\)
2 \(a>b\)
3 \(\mathrm{a}=\mathrm{b}\)
4 \(a=1+b\)
Linear Inequalities and Linear Programming

88545 The maximum value of \(z=75 x+50 y\), subject
to \(8 x+5 y \leq 60,4 x+5 y \leq 40, x \geq 0, y \geq 0\) is

1 575
2 600
3 580
4 400
Linear Inequalities and Linear Programming

88546 The minimum value of \(z=5 x+4 y\) subject to \(\mathbf{y} \leq \mathbf{2 x}, \mathrm{x} \leq \mathbf{2} \mathbf{y}, \mathbf{x}+\mathbf{y} \geq \mathbf{3}, \mathbf{x} \geq \mathbf{0}, \mathrm{y} \geq 0\) is

1 12
2 14
3 13
4 10
Linear Inequalities and Linear Programming

88543 The maximum value \(z=6 x+8 y\) subject to \(x-y \geq 0, x+3 y \leq 12, x \geq 0, y \geq 0\) is

1 42
2 72
3 24
4 96
Linear Inequalities and Linear Programming

88544 If \(z=a x+b y ; a, b>0\) subject to \(x \leq 2, y \leq 2, x\) \(+\mathbf{y} \geq \mathbf{3}, \mathbf{x} \geq \mathbf{0}, \mathrm{y} \geq \mathbf{0}\) has minimum value at \((2,1)\) only, then

1 \(a\lt b\)
2 \(a>b\)
3 \(\mathrm{a}=\mathrm{b}\)
4 \(a=1+b\)
Linear Inequalities and Linear Programming

88545 The maximum value of \(z=75 x+50 y\), subject
to \(8 x+5 y \leq 60,4 x+5 y \leq 40, x \geq 0, y \geq 0\) is

1 575
2 600
3 580
4 400
Linear Inequalities and Linear Programming

88546 The minimum value of \(z=5 x+4 y\) subject to \(\mathbf{y} \leq \mathbf{2 x}, \mathrm{x} \leq \mathbf{2} \mathbf{y}, \mathbf{x}+\mathbf{y} \geq \mathbf{3}, \mathbf{x} \geq \mathbf{0}, \mathrm{y} \geq 0\) is

1 12
2 14
3 13
4 10
Linear Inequalities and Linear Programming

88543 The maximum value \(z=6 x+8 y\) subject to \(x-y \geq 0, x+3 y \leq 12, x \geq 0, y \geq 0\) is

1 42
2 72
3 24
4 96
Linear Inequalities and Linear Programming

88544 If \(z=a x+b y ; a, b>0\) subject to \(x \leq 2, y \leq 2, x\) \(+\mathbf{y} \geq \mathbf{3}, \mathbf{x} \geq \mathbf{0}, \mathrm{y} \geq \mathbf{0}\) has minimum value at \((2,1)\) only, then

1 \(a\lt b\)
2 \(a>b\)
3 \(\mathrm{a}=\mathrm{b}\)
4 \(a=1+b\)
Linear Inequalities and Linear Programming

88545 The maximum value of \(z=75 x+50 y\), subject
to \(8 x+5 y \leq 60,4 x+5 y \leq 40, x \geq 0, y \geq 0\) is

1 575
2 600
3 580
4 400
Linear Inequalities and Linear Programming

88546 The minimum value of \(z=5 x+4 y\) subject to \(\mathbf{y} \leq \mathbf{2 x}, \mathrm{x} \leq \mathbf{2} \mathbf{y}, \mathbf{x}+\mathbf{y} \geq \mathbf{3}, \mathbf{x} \geq \mathbf{0}, \mathrm{y} \geq 0\) is

1 12
2 14
3 13
4 10
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Linear Inequalities and Linear Programming

88543 The maximum value \(z=6 x+8 y\) subject to \(x-y \geq 0, x+3 y \leq 12, x \geq 0, y \geq 0\) is

1 42
2 72
3 24
4 96
Linear Inequalities and Linear Programming

88544 If \(z=a x+b y ; a, b>0\) subject to \(x \leq 2, y \leq 2, x\) \(+\mathbf{y} \geq \mathbf{3}, \mathbf{x} \geq \mathbf{0}, \mathrm{y} \geq \mathbf{0}\) has minimum value at \((2,1)\) only, then

1 \(a\lt b\)
2 \(a>b\)
3 \(\mathrm{a}=\mathrm{b}\)
4 \(a=1+b\)
Linear Inequalities and Linear Programming

88545 The maximum value of \(z=75 x+50 y\), subject
to \(8 x+5 y \leq 60,4 x+5 y \leq 40, x \geq 0, y \geq 0\) is

1 575
2 600
3 580
4 400
Linear Inequalities and Linear Programming

88546 The minimum value of \(z=5 x+4 y\) subject to \(\mathbf{y} \leq \mathbf{2 x}, \mathrm{x} \leq \mathbf{2} \mathbf{y}, \mathbf{x}+\mathbf{y} \geq \mathbf{3}, \mathbf{x} \geq \mathbf{0}, \mathrm{y} \geq 0\) is

1 12
2 14
3 13
4 10