Algebraic Solution of Linear Inequalities in One Variable
Linear Inequalities and Linear Programming

88526 The solution set of the in equation \(\frac{x+11}{x-3}>0\) is

1 \((-\infty,-11) \cup(3, \infty)\)
2 \((-\infty,-10) \cup(2, \infty)\)
3 \((-100,-11) \cup(1, \infty)\)
4 \((0,5) \cup(-1,0)\)
5 \((-5,0) \cup(3,7)\)
Linear Inequalities and Linear Programming

88527 The set of admissible values of \(x\) such that \(\frac{2 x+3}{2 x-9}\lt 0\) is

1 \(\left(-\infty,-\frac{3}{2}\right) \cup\left(\frac{9}{2}, \infty\right)\)
2 \((-\infty, 0) \cup\left(\frac{9}{2}, \infty\right)\)
3 \(\left(-\frac{3}{2}, 0\right)\)
4 \(\left(0, \frac{9}{2}\right)\)
5 \(\left(-\frac{3}{2}, \frac{9}{2}\right)\)
Linear Inequalities and Linear Programming

88528 Suppose \(a, b\) and \(c\) are real numbers such that \(\frac{a}{b}>1\) and \(\frac{a}{c}\lt 0\). Which one of the following is true?

1 \(a+b-c>0\)
2 \(a>b\)
3 \((\mathrm{a}-\mathrm{c})(\mathrm{b}-\mathrm{c})>0\)
4 \(a+b+c>0\)
5 \(a b c>0\)
Linear Inequalities and Linear Programming

88529 The set of all \(x\) satisfying the inequality
\(\frac{4 x-1}{3 x+1} \geq 1\) is :

1 \(\left(-\infty,-\frac{1}{3}\right) \cup\left[\frac{1}{4}, \infty\right)\)
2 \(\left(-\infty,-\frac{2}{3}\right) \cup\left[\frac{5}{4}, \infty\right)\)
3 \(\left(-\infty,-\frac{1}{3}\right) \cup[2, \infty)\)
4 \(\left(-\infty,-\frac{2}{3}\right) \cup[4, \infty)\)
5 \(\left(-\infty,-\frac{1}{3}\right) \cup\left[\frac{1}{2}, \infty\right)\)
Linear Inequalities and Linear Programming

88526 The solution set of the in equation \(\frac{x+11}{x-3}>0\) is

1 \((-\infty,-11) \cup(3, \infty)\)
2 \((-\infty,-10) \cup(2, \infty)\)
3 \((-100,-11) \cup(1, \infty)\)
4 \((0,5) \cup(-1,0)\)
5 \((-5,0) \cup(3,7)\)
Linear Inequalities and Linear Programming

88527 The set of admissible values of \(x\) such that \(\frac{2 x+3}{2 x-9}\lt 0\) is

1 \(\left(-\infty,-\frac{3}{2}\right) \cup\left(\frac{9}{2}, \infty\right)\)
2 \((-\infty, 0) \cup\left(\frac{9}{2}, \infty\right)\)
3 \(\left(-\frac{3}{2}, 0\right)\)
4 \(\left(0, \frac{9}{2}\right)\)
5 \(\left(-\frac{3}{2}, \frac{9}{2}\right)\)
Linear Inequalities and Linear Programming

88528 Suppose \(a, b\) and \(c\) are real numbers such that \(\frac{a}{b}>1\) and \(\frac{a}{c}\lt 0\). Which one of the following is true?

1 \(a+b-c>0\)
2 \(a>b\)
3 \((\mathrm{a}-\mathrm{c})(\mathrm{b}-\mathrm{c})>0\)
4 \(a+b+c>0\)
5 \(a b c>0\)
Linear Inequalities and Linear Programming

88529 The set of all \(x\) satisfying the inequality
\(\frac{4 x-1}{3 x+1} \geq 1\) is :

1 \(\left(-\infty,-\frac{1}{3}\right) \cup\left[\frac{1}{4}, \infty\right)\)
2 \(\left(-\infty,-\frac{2}{3}\right) \cup\left[\frac{5}{4}, \infty\right)\)
3 \(\left(-\infty,-\frac{1}{3}\right) \cup[2, \infty)\)
4 \(\left(-\infty,-\frac{2}{3}\right) \cup[4, \infty)\)
5 \(\left(-\infty,-\frac{1}{3}\right) \cup\left[\frac{1}{2}, \infty\right)\)
Linear Inequalities and Linear Programming

88526 The solution set of the in equation \(\frac{x+11}{x-3}>0\) is

1 \((-\infty,-11) \cup(3, \infty)\)
2 \((-\infty,-10) \cup(2, \infty)\)
3 \((-100,-11) \cup(1, \infty)\)
4 \((0,5) \cup(-1,0)\)
5 \((-5,0) \cup(3,7)\)
Linear Inequalities and Linear Programming

88527 The set of admissible values of \(x\) such that \(\frac{2 x+3}{2 x-9}\lt 0\) is

1 \(\left(-\infty,-\frac{3}{2}\right) \cup\left(\frac{9}{2}, \infty\right)\)
2 \((-\infty, 0) \cup\left(\frac{9}{2}, \infty\right)\)
3 \(\left(-\frac{3}{2}, 0\right)\)
4 \(\left(0, \frac{9}{2}\right)\)
5 \(\left(-\frac{3}{2}, \frac{9}{2}\right)\)
Linear Inequalities and Linear Programming

88528 Suppose \(a, b\) and \(c\) are real numbers such that \(\frac{a}{b}>1\) and \(\frac{a}{c}\lt 0\). Which one of the following is true?

1 \(a+b-c>0\)
2 \(a>b\)
3 \((\mathrm{a}-\mathrm{c})(\mathrm{b}-\mathrm{c})>0\)
4 \(a+b+c>0\)
5 \(a b c>0\)
Linear Inequalities and Linear Programming

88529 The set of all \(x\) satisfying the inequality
\(\frac{4 x-1}{3 x+1} \geq 1\) is :

1 \(\left(-\infty,-\frac{1}{3}\right) \cup\left[\frac{1}{4}, \infty\right)\)
2 \(\left(-\infty,-\frac{2}{3}\right) \cup\left[\frac{5}{4}, \infty\right)\)
3 \(\left(-\infty,-\frac{1}{3}\right) \cup[2, \infty)\)
4 \(\left(-\infty,-\frac{2}{3}\right) \cup[4, \infty)\)
5 \(\left(-\infty,-\frac{1}{3}\right) \cup\left[\frac{1}{2}, \infty\right)\)
Linear Inequalities and Linear Programming

88526 The solution set of the in equation \(\frac{x+11}{x-3}>0\) is

1 \((-\infty,-11) \cup(3, \infty)\)
2 \((-\infty,-10) \cup(2, \infty)\)
3 \((-100,-11) \cup(1, \infty)\)
4 \((0,5) \cup(-1,0)\)
5 \((-5,0) \cup(3,7)\)
Linear Inequalities and Linear Programming

88527 The set of admissible values of \(x\) such that \(\frac{2 x+3}{2 x-9}\lt 0\) is

1 \(\left(-\infty,-\frac{3}{2}\right) \cup\left(\frac{9}{2}, \infty\right)\)
2 \((-\infty, 0) \cup\left(\frac{9}{2}, \infty\right)\)
3 \(\left(-\frac{3}{2}, 0\right)\)
4 \(\left(0, \frac{9}{2}\right)\)
5 \(\left(-\frac{3}{2}, \frac{9}{2}\right)\)
Linear Inequalities and Linear Programming

88528 Suppose \(a, b\) and \(c\) are real numbers such that \(\frac{a}{b}>1\) and \(\frac{a}{c}\lt 0\). Which one of the following is true?

1 \(a+b-c>0\)
2 \(a>b\)
3 \((\mathrm{a}-\mathrm{c})(\mathrm{b}-\mathrm{c})>0\)
4 \(a+b+c>0\)
5 \(a b c>0\)
Linear Inequalities and Linear Programming

88529 The set of all \(x\) satisfying the inequality
\(\frac{4 x-1}{3 x+1} \geq 1\) is :

1 \(\left(-\infty,-\frac{1}{3}\right) \cup\left[\frac{1}{4}, \infty\right)\)
2 \(\left(-\infty,-\frac{2}{3}\right) \cup\left[\frac{5}{4}, \infty\right)\)
3 \(\left(-\infty,-\frac{1}{3}\right) \cup[2, \infty)\)
4 \(\left(-\infty,-\frac{2}{3}\right) \cup[4, \infty)\)
5 \(\left(-\infty,-\frac{1}{3}\right) \cup\left[\frac{1}{2}, \infty\right)\)