Algebraic Solution of Linear Inequalities in One Variable
Linear Inequalities and Linear Programming

88522 If \(\frac{2 x+3}{5}\lt \frac{4 x-1}{2}\), then \(x\) lies \(x\) in the interval

1 \(\left[0, \frac{11}{16}\right)\)
2 \(\left[\frac{11}{16}, \infty\right)\)
3 \(\left(0, \frac{11}{16}\right)\)
4 \(\left(-\infty, \frac{11}{16}\right)\)
5 \(\left(\frac{11}{16}, \infty\right)\)
Linear Inequalities and Linear Programming

88523 The solution set of \(\frac{x+3}{x-2} \leq 2\) is

1 \((-\infty, \infty)\)
2 \((-\infty, 2] \cup[7, \infty)\)
3 \((-\infty, 2) \cup[7, \infty)\)
4 \([7, \infty)\)
5 \((-\infty, 2)\)
Linear Inequalities and Linear Programming

88524 If \(|2 x-3|\lt |x+5|\), then \(x\) lies in the interval

1 \((-3,5)\)
2 \((5,9)\)
3 \(\left(-\frac{2}{3}, 8\right)\)
4 \(\left(-8, \frac{2}{3}\right)\)
5 \(\left(-5, \frac{2}{3}\right)\)
Linear Inequalities and Linear Programming

88525 If \(3 \leq 3 t-18 \leq 18\), then which one of the following is true?

1 \(15 \leq 2 \mathrm{t}+1 \leq 20\)
2 \(8 \leq \mathrm{t}\lt 12\)
3 \(8 \leq \mathrm{t}+1 \leq 13\)
4 \(21 \leq 3 \mathrm{t} \leq 24\)
5 \(\mathrm{t} \leq 7\) or \(\mathrm{t} \geq 12\)
Linear Inequalities and Linear Programming

88522 If \(\frac{2 x+3}{5}\lt \frac{4 x-1}{2}\), then \(x\) lies \(x\) in the interval

1 \(\left[0, \frac{11}{16}\right)\)
2 \(\left[\frac{11}{16}, \infty\right)\)
3 \(\left(0, \frac{11}{16}\right)\)
4 \(\left(-\infty, \frac{11}{16}\right)\)
5 \(\left(\frac{11}{16}, \infty\right)\)
Linear Inequalities and Linear Programming

88523 The solution set of \(\frac{x+3}{x-2} \leq 2\) is

1 \((-\infty, \infty)\)
2 \((-\infty, 2] \cup[7, \infty)\)
3 \((-\infty, 2) \cup[7, \infty)\)
4 \([7, \infty)\)
5 \((-\infty, 2)\)
Linear Inequalities and Linear Programming

88524 If \(|2 x-3|\lt |x+5|\), then \(x\) lies in the interval

1 \((-3,5)\)
2 \((5,9)\)
3 \(\left(-\frac{2}{3}, 8\right)\)
4 \(\left(-8, \frac{2}{3}\right)\)
5 \(\left(-5, \frac{2}{3}\right)\)
Linear Inequalities and Linear Programming

88525 If \(3 \leq 3 t-18 \leq 18\), then which one of the following is true?

1 \(15 \leq 2 \mathrm{t}+1 \leq 20\)
2 \(8 \leq \mathrm{t}\lt 12\)
3 \(8 \leq \mathrm{t}+1 \leq 13\)
4 \(21 \leq 3 \mathrm{t} \leq 24\)
5 \(\mathrm{t} \leq 7\) or \(\mathrm{t} \geq 12\)
Linear Inequalities and Linear Programming

88522 If \(\frac{2 x+3}{5}\lt \frac{4 x-1}{2}\), then \(x\) lies \(x\) in the interval

1 \(\left[0, \frac{11}{16}\right)\)
2 \(\left[\frac{11}{16}, \infty\right)\)
3 \(\left(0, \frac{11}{16}\right)\)
4 \(\left(-\infty, \frac{11}{16}\right)\)
5 \(\left(\frac{11}{16}, \infty\right)\)
Linear Inequalities and Linear Programming

88523 The solution set of \(\frac{x+3}{x-2} \leq 2\) is

1 \((-\infty, \infty)\)
2 \((-\infty, 2] \cup[7, \infty)\)
3 \((-\infty, 2) \cup[7, \infty)\)
4 \([7, \infty)\)
5 \((-\infty, 2)\)
Linear Inequalities and Linear Programming

88524 If \(|2 x-3|\lt |x+5|\), then \(x\) lies in the interval

1 \((-3,5)\)
2 \((5,9)\)
3 \(\left(-\frac{2}{3}, 8\right)\)
4 \(\left(-8, \frac{2}{3}\right)\)
5 \(\left(-5, \frac{2}{3}\right)\)
Linear Inequalities and Linear Programming

88525 If \(3 \leq 3 t-18 \leq 18\), then which one of the following is true?

1 \(15 \leq 2 \mathrm{t}+1 \leq 20\)
2 \(8 \leq \mathrm{t}\lt 12\)
3 \(8 \leq \mathrm{t}+1 \leq 13\)
4 \(21 \leq 3 \mathrm{t} \leq 24\)
5 \(\mathrm{t} \leq 7\) or \(\mathrm{t} \geq 12\)
Linear Inequalities and Linear Programming

88522 If \(\frac{2 x+3}{5}\lt \frac{4 x-1}{2}\), then \(x\) lies \(x\) in the interval

1 \(\left[0, \frac{11}{16}\right)\)
2 \(\left[\frac{11}{16}, \infty\right)\)
3 \(\left(0, \frac{11}{16}\right)\)
4 \(\left(-\infty, \frac{11}{16}\right)\)
5 \(\left(\frac{11}{16}, \infty\right)\)
Linear Inequalities and Linear Programming

88523 The solution set of \(\frac{x+3}{x-2} \leq 2\) is

1 \((-\infty, \infty)\)
2 \((-\infty, 2] \cup[7, \infty)\)
3 \((-\infty, 2) \cup[7, \infty)\)
4 \([7, \infty)\)
5 \((-\infty, 2)\)
Linear Inequalities and Linear Programming

88524 If \(|2 x-3|\lt |x+5|\), then \(x\) lies in the interval

1 \((-3,5)\)
2 \((5,9)\)
3 \(\left(-\frac{2}{3}, 8\right)\)
4 \(\left(-8, \frac{2}{3}\right)\)
5 \(\left(-5, \frac{2}{3}\right)\)
Linear Inequalities and Linear Programming

88525 If \(3 \leq 3 t-18 \leq 18\), then which one of the following is true?

1 \(15 \leq 2 \mathrm{t}+1 \leq 20\)
2 \(8 \leq \mathrm{t}\lt 12\)
3 \(8 \leq \mathrm{t}+1 \leq 13\)
4 \(21 \leq 3 \mathrm{t} \leq 24\)
5 \(\mathrm{t} \leq 7\) or \(\mathrm{t} \geq 12\)