Algebraic Solution of Linear Inequalities in One Variable
Linear Inequalities and Linear Programming

88504 The largest interval for which \(x^{12}-x^{9}+x^{4}-x\) \(+\mathbf{1}>\mathbf{0}\) is

1 \(-4\lt x\lt 0\)
2 \(0\lt x\lt 1\)
3 \(-100\lt \mathrm{x}\lt 100\)
4 \(-\infty\lt x\lt \infty\)
Linear Inequalities and Linear Programming

88505 The values of \(x\) for which \(4^{x}+4^{1-x}-5\lt 0\), is given by

1 \(x=1\)
2 \(x=0,1\)
3 \(x=0\)
4 \(0\lt x\lt 1\)
Linear Inequalities and Linear Programming

88510 For a real number \(r\) we denote by \([r]\) the largest integer less than or equal to \(r\). If \(x, y\) are real numbers with \(x, y \geq 1\) then which of the following statements is always true?

1 \([\mathrm{x}+\mathrm{y}] \leq[\mathrm{x}]+[\mathrm{y}]\)
2 \([x y] \leq[x][y]\)
3 \(\left[2^{\mathrm{x}}\right] \leq 2^{[\mathrm{x}]}\)
4 \(\left[\frac{x}{y}\right] \leq \frac{[x]}{[y]}\)
Linear Inequalities and Linear Programming

88511 The real numbers \(x\) satisfying \(\frac{\sqrt{x+5}}{1-x}>1\) are precisely those which satisfy

1 \(x\lt 1\)
2 \(0\lt x\lt 1\)
3 \(-5\lt x\lt 1\)
4 \(-1\lt x\lt 1\)
Linear Inequalities and Linear Programming

88504 The largest interval for which \(x^{12}-x^{9}+x^{4}-x\) \(+\mathbf{1}>\mathbf{0}\) is

1 \(-4\lt x\lt 0\)
2 \(0\lt x\lt 1\)
3 \(-100\lt \mathrm{x}\lt 100\)
4 \(-\infty\lt x\lt \infty\)
Linear Inequalities and Linear Programming

88505 The values of \(x\) for which \(4^{x}+4^{1-x}-5\lt 0\), is given by

1 \(x=1\)
2 \(x=0,1\)
3 \(x=0\)
4 \(0\lt x\lt 1\)
Linear Inequalities and Linear Programming

88510 For a real number \(r\) we denote by \([r]\) the largest integer less than or equal to \(r\). If \(x, y\) are real numbers with \(x, y \geq 1\) then which of the following statements is always true?

1 \([\mathrm{x}+\mathrm{y}] \leq[\mathrm{x}]+[\mathrm{y}]\)
2 \([x y] \leq[x][y]\)
3 \(\left[2^{\mathrm{x}}\right] \leq 2^{[\mathrm{x}]}\)
4 \(\left[\frac{x}{y}\right] \leq \frac{[x]}{[y]}\)
Linear Inequalities and Linear Programming

88511 The real numbers \(x\) satisfying \(\frac{\sqrt{x+5}}{1-x}>1\) are precisely those which satisfy

1 \(x\lt 1\)
2 \(0\lt x\lt 1\)
3 \(-5\lt x\lt 1\)
4 \(-1\lt x\lt 1\)
Linear Inequalities and Linear Programming

88504 The largest interval for which \(x^{12}-x^{9}+x^{4}-x\) \(+\mathbf{1}>\mathbf{0}\) is

1 \(-4\lt x\lt 0\)
2 \(0\lt x\lt 1\)
3 \(-100\lt \mathrm{x}\lt 100\)
4 \(-\infty\lt x\lt \infty\)
Linear Inequalities and Linear Programming

88505 The values of \(x\) for which \(4^{x}+4^{1-x}-5\lt 0\), is given by

1 \(x=1\)
2 \(x=0,1\)
3 \(x=0\)
4 \(0\lt x\lt 1\)
Linear Inequalities and Linear Programming

88510 For a real number \(r\) we denote by \([r]\) the largest integer less than or equal to \(r\). If \(x, y\) are real numbers with \(x, y \geq 1\) then which of the following statements is always true?

1 \([\mathrm{x}+\mathrm{y}] \leq[\mathrm{x}]+[\mathrm{y}]\)
2 \([x y] \leq[x][y]\)
3 \(\left[2^{\mathrm{x}}\right] \leq 2^{[\mathrm{x}]}\)
4 \(\left[\frac{x}{y}\right] \leq \frac{[x]}{[y]}\)
Linear Inequalities and Linear Programming

88511 The real numbers \(x\) satisfying \(\frac{\sqrt{x+5}}{1-x}>1\) are precisely those which satisfy

1 \(x\lt 1\)
2 \(0\lt x\lt 1\)
3 \(-5\lt x\lt 1\)
4 \(-1\lt x\lt 1\)
Linear Inequalities and Linear Programming

88504 The largest interval for which \(x^{12}-x^{9}+x^{4}-x\) \(+\mathbf{1}>\mathbf{0}\) is

1 \(-4\lt x\lt 0\)
2 \(0\lt x\lt 1\)
3 \(-100\lt \mathrm{x}\lt 100\)
4 \(-\infty\lt x\lt \infty\)
Linear Inequalities and Linear Programming

88505 The values of \(x\) for which \(4^{x}+4^{1-x}-5\lt 0\), is given by

1 \(x=1\)
2 \(x=0,1\)
3 \(x=0\)
4 \(0\lt x\lt 1\)
Linear Inequalities and Linear Programming

88510 For a real number \(r\) we denote by \([r]\) the largest integer less than or equal to \(r\). If \(x, y\) are real numbers with \(x, y \geq 1\) then which of the following statements is always true?

1 \([\mathrm{x}+\mathrm{y}] \leq[\mathrm{x}]+[\mathrm{y}]\)
2 \([x y] \leq[x][y]\)
3 \(\left[2^{\mathrm{x}}\right] \leq 2^{[\mathrm{x}]}\)
4 \(\left[\frac{x}{y}\right] \leq \frac{[x]}{[y]}\)
Linear Inequalities and Linear Programming

88511 The real numbers \(x\) satisfying \(\frac{\sqrt{x+5}}{1-x}>1\) are precisely those which satisfy

1 \(x\lt 1\)
2 \(0\lt x\lt 1\)
3 \(-5\lt x\lt 1\)
4 \(-1\lt x\lt 1\)