88499
If the regression lines of \(Y\) on \(X\) and \(X\) on \(Y\) are inclined to the \(x\)-axis at \(45^{\circ}\) and \(30^{\circ}\) respectively, then the correlation coefficient \(V_{x y}\)
1 \(\sqrt{3}\)
2 \(\frac{1}{\sqrt{3}}\)
3 \(3^{\frac{1}{4}}\)
4 \(3^{-\frac{1}{4}}\)
Explanation:
(C) : Slope regression line of \(y\) on \(x\) \(\mathrm{b}_{\mathrm{yx}}=\tan 45^{\circ}=1\) Slope of regression line of \(x\) on \(y\) \(\frac{1}{\mathrm{~b}_{\mathrm{xy}}}=\frac{1}{\tan 30} \Rightarrow \frac{1}{\frac{1}{\sqrt{3}}}=\sqrt{3}\) \(\mathrm{r}=\sqrt{\mathrm{b}_{\mathrm{yx}} \cdot \mathrm{b}_{\mathrm{xy}}}=\sqrt{1 \cdot \sqrt{3}}=\left[(3)^{1 / 2}\right]^{1 / 2}=3^{1 / 4}\)
AMU-2004
Linear Inequalities and Linear Programming
88500
The solution of the inequality \(\left[x^{2}-4 x\right]\lt 5\) is
88499
If the regression lines of \(Y\) on \(X\) and \(X\) on \(Y\) are inclined to the \(x\)-axis at \(45^{\circ}\) and \(30^{\circ}\) respectively, then the correlation coefficient \(V_{x y}\)
1 \(\sqrt{3}\)
2 \(\frac{1}{\sqrt{3}}\)
3 \(3^{\frac{1}{4}}\)
4 \(3^{-\frac{1}{4}}\)
Explanation:
(C) : Slope regression line of \(y\) on \(x\) \(\mathrm{b}_{\mathrm{yx}}=\tan 45^{\circ}=1\) Slope of regression line of \(x\) on \(y\) \(\frac{1}{\mathrm{~b}_{\mathrm{xy}}}=\frac{1}{\tan 30} \Rightarrow \frac{1}{\frac{1}{\sqrt{3}}}=\sqrt{3}\) \(\mathrm{r}=\sqrt{\mathrm{b}_{\mathrm{yx}} \cdot \mathrm{b}_{\mathrm{xy}}}=\sqrt{1 \cdot \sqrt{3}}=\left[(3)^{1 / 2}\right]^{1 / 2}=3^{1 / 4}\)
AMU-2004
Linear Inequalities and Linear Programming
88500
The solution of the inequality \(\left[x^{2}-4 x\right]\lt 5\) is
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Linear Inequalities and Linear Programming
88499
If the regression lines of \(Y\) on \(X\) and \(X\) on \(Y\) are inclined to the \(x\)-axis at \(45^{\circ}\) and \(30^{\circ}\) respectively, then the correlation coefficient \(V_{x y}\)
1 \(\sqrt{3}\)
2 \(\frac{1}{\sqrt{3}}\)
3 \(3^{\frac{1}{4}}\)
4 \(3^{-\frac{1}{4}}\)
Explanation:
(C) : Slope regression line of \(y\) on \(x\) \(\mathrm{b}_{\mathrm{yx}}=\tan 45^{\circ}=1\) Slope of regression line of \(x\) on \(y\) \(\frac{1}{\mathrm{~b}_{\mathrm{xy}}}=\frac{1}{\tan 30} \Rightarrow \frac{1}{\frac{1}{\sqrt{3}}}=\sqrt{3}\) \(\mathrm{r}=\sqrt{\mathrm{b}_{\mathrm{yx}} \cdot \mathrm{b}_{\mathrm{xy}}}=\sqrt{1 \cdot \sqrt{3}}=\left[(3)^{1 / 2}\right]^{1 / 2}=3^{1 / 4}\)
AMU-2004
Linear Inequalities and Linear Programming
88500
The solution of the inequality \(\left[x^{2}-4 x\right]\lt 5\) is
88499
If the regression lines of \(Y\) on \(X\) and \(X\) on \(Y\) are inclined to the \(x\)-axis at \(45^{\circ}\) and \(30^{\circ}\) respectively, then the correlation coefficient \(V_{x y}\)
1 \(\sqrt{3}\)
2 \(\frac{1}{\sqrt{3}}\)
3 \(3^{\frac{1}{4}}\)
4 \(3^{-\frac{1}{4}}\)
Explanation:
(C) : Slope regression line of \(y\) on \(x\) \(\mathrm{b}_{\mathrm{yx}}=\tan 45^{\circ}=1\) Slope of regression line of \(x\) on \(y\) \(\frac{1}{\mathrm{~b}_{\mathrm{xy}}}=\frac{1}{\tan 30} \Rightarrow \frac{1}{\frac{1}{\sqrt{3}}}=\sqrt{3}\) \(\mathrm{r}=\sqrt{\mathrm{b}_{\mathrm{yx}} \cdot \mathrm{b}_{\mathrm{xy}}}=\sqrt{1 \cdot \sqrt{3}}=\left[(3)^{1 / 2}\right]^{1 / 2}=3^{1 / 4}\)
AMU-2004
Linear Inequalities and Linear Programming
88500
The solution of the inequality \(\left[x^{2}-4 x\right]\lt 5\) is