Locus and its Equation
Co-Ordinate system

88429 A straight rod of length 9 units slides with its ends \(A, B\) always on the \(X\) and \(Y\)-axis respectively. Then the locus of the centroid of \(\triangle O A B\) is :

1 \(x^{2}+y^{2}=3\)
2 \(x^{2}+y^{2}=9\)
3 \(x^{2}+y^{2}=1\)
4 \(\mathrm{x}^{2}+\mathrm{y}^{2}=81\)
Co-Ordinate system

88430 The locus of a point of intersection of two lines \(x \sqrt{3}-y=k \sqrt{3}\) and \(\sqrt{3} k x+k y=\sqrt{3}, k \in R\), describes

1 an ellipse
2 a hyperbola
3 a pair of lines
4 a parabola
Co-Ordinate system

88431 A variable plane remains at constant distance \(p\) from the origin. If it meets the coordinate axes at the points \(A, B, C\) then the locus of the Centroid of \(\triangle \mathrm{ABC}\) is

1 \(\mathrm{x}^{-2}+\mathrm{y}^{-2}+\mathrm{z}^{-2}=9 \mathrm{p}^{-2}\)
2 \(\mathrm{x}^{-3}+\mathrm{y}^{-3}+\mathrm{z}^{-3}=9 \mathrm{p}^{-3}\)
3 \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=9 \mathrm{p}^{2}\)
4 \(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}=9 \mathrm{p}^{3}\)
Co-Ordinate system

88432 The centres of a set of circles, each of radius 3, lie on the circle \(x^{2}+y^{2}=25\). The locus of any point in the set is

1 \(4 \leq x^{2}+y^{2} \leq 64\)
2 \(x^{2}+y^{2} \leq 25\)
3 \(\mathrm{x}^{2}+\mathrm{y}^{2} \geq 25\)
4 \(3 \leq x^{2}+y^{2} \geq 9\)
Co-Ordinate system

88433 The line joining \((5,0)\) to \((10 \cos \theta, 10 \sin \theta)\) is divided internally in the ratio \(2: 3\) at \(P\). If \(\theta\) varies, then the locus of \(P\) is

1 a straight line
2 a pair of straight lines
3 a circle
4 None of the above
Co-Ordinate system

88429 A straight rod of length 9 units slides with its ends \(A, B\) always on the \(X\) and \(Y\)-axis respectively. Then the locus of the centroid of \(\triangle O A B\) is :

1 \(x^{2}+y^{2}=3\)
2 \(x^{2}+y^{2}=9\)
3 \(x^{2}+y^{2}=1\)
4 \(\mathrm{x}^{2}+\mathrm{y}^{2}=81\)
Co-Ordinate system

88430 The locus of a point of intersection of two lines \(x \sqrt{3}-y=k \sqrt{3}\) and \(\sqrt{3} k x+k y=\sqrt{3}, k \in R\), describes

1 an ellipse
2 a hyperbola
3 a pair of lines
4 a parabola
Co-Ordinate system

88431 A variable plane remains at constant distance \(p\) from the origin. If it meets the coordinate axes at the points \(A, B, C\) then the locus of the Centroid of \(\triangle \mathrm{ABC}\) is

1 \(\mathrm{x}^{-2}+\mathrm{y}^{-2}+\mathrm{z}^{-2}=9 \mathrm{p}^{-2}\)
2 \(\mathrm{x}^{-3}+\mathrm{y}^{-3}+\mathrm{z}^{-3}=9 \mathrm{p}^{-3}\)
3 \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=9 \mathrm{p}^{2}\)
4 \(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}=9 \mathrm{p}^{3}\)
Co-Ordinate system

88432 The centres of a set of circles, each of radius 3, lie on the circle \(x^{2}+y^{2}=25\). The locus of any point in the set is

1 \(4 \leq x^{2}+y^{2} \leq 64\)
2 \(x^{2}+y^{2} \leq 25\)
3 \(\mathrm{x}^{2}+\mathrm{y}^{2} \geq 25\)
4 \(3 \leq x^{2}+y^{2} \geq 9\)
Co-Ordinate system

88433 The line joining \((5,0)\) to \((10 \cos \theta, 10 \sin \theta)\) is divided internally in the ratio \(2: 3\) at \(P\). If \(\theta\) varies, then the locus of \(P\) is

1 a straight line
2 a pair of straight lines
3 a circle
4 None of the above
Co-Ordinate system

88429 A straight rod of length 9 units slides with its ends \(A, B\) always on the \(X\) and \(Y\)-axis respectively. Then the locus of the centroid of \(\triangle O A B\) is :

1 \(x^{2}+y^{2}=3\)
2 \(x^{2}+y^{2}=9\)
3 \(x^{2}+y^{2}=1\)
4 \(\mathrm{x}^{2}+\mathrm{y}^{2}=81\)
Co-Ordinate system

88430 The locus of a point of intersection of two lines \(x \sqrt{3}-y=k \sqrt{3}\) and \(\sqrt{3} k x+k y=\sqrt{3}, k \in R\), describes

1 an ellipse
2 a hyperbola
3 a pair of lines
4 a parabola
Co-Ordinate system

88431 A variable plane remains at constant distance \(p\) from the origin. If it meets the coordinate axes at the points \(A, B, C\) then the locus of the Centroid of \(\triangle \mathrm{ABC}\) is

1 \(\mathrm{x}^{-2}+\mathrm{y}^{-2}+\mathrm{z}^{-2}=9 \mathrm{p}^{-2}\)
2 \(\mathrm{x}^{-3}+\mathrm{y}^{-3}+\mathrm{z}^{-3}=9 \mathrm{p}^{-3}\)
3 \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=9 \mathrm{p}^{2}\)
4 \(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}=9 \mathrm{p}^{3}\)
Co-Ordinate system

88432 The centres of a set of circles, each of radius 3, lie on the circle \(x^{2}+y^{2}=25\). The locus of any point in the set is

1 \(4 \leq x^{2}+y^{2} \leq 64\)
2 \(x^{2}+y^{2} \leq 25\)
3 \(\mathrm{x}^{2}+\mathrm{y}^{2} \geq 25\)
4 \(3 \leq x^{2}+y^{2} \geq 9\)
Co-Ordinate system

88433 The line joining \((5,0)\) to \((10 \cos \theta, 10 \sin \theta)\) is divided internally in the ratio \(2: 3\) at \(P\). If \(\theta\) varies, then the locus of \(P\) is

1 a straight line
2 a pair of straight lines
3 a circle
4 None of the above
Co-Ordinate system

88429 A straight rod of length 9 units slides with its ends \(A, B\) always on the \(X\) and \(Y\)-axis respectively. Then the locus of the centroid of \(\triangle O A B\) is :

1 \(x^{2}+y^{2}=3\)
2 \(x^{2}+y^{2}=9\)
3 \(x^{2}+y^{2}=1\)
4 \(\mathrm{x}^{2}+\mathrm{y}^{2}=81\)
Co-Ordinate system

88430 The locus of a point of intersection of two lines \(x \sqrt{3}-y=k \sqrt{3}\) and \(\sqrt{3} k x+k y=\sqrt{3}, k \in R\), describes

1 an ellipse
2 a hyperbola
3 a pair of lines
4 a parabola
Co-Ordinate system

88431 A variable plane remains at constant distance \(p\) from the origin. If it meets the coordinate axes at the points \(A, B, C\) then the locus of the Centroid of \(\triangle \mathrm{ABC}\) is

1 \(\mathrm{x}^{-2}+\mathrm{y}^{-2}+\mathrm{z}^{-2}=9 \mathrm{p}^{-2}\)
2 \(\mathrm{x}^{-3}+\mathrm{y}^{-3}+\mathrm{z}^{-3}=9 \mathrm{p}^{-3}\)
3 \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=9 \mathrm{p}^{2}\)
4 \(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}=9 \mathrm{p}^{3}\)
Co-Ordinate system

88432 The centres of a set of circles, each of radius 3, lie on the circle \(x^{2}+y^{2}=25\). The locus of any point in the set is

1 \(4 \leq x^{2}+y^{2} \leq 64\)
2 \(x^{2}+y^{2} \leq 25\)
3 \(\mathrm{x}^{2}+\mathrm{y}^{2} \geq 25\)
4 \(3 \leq x^{2}+y^{2} \geq 9\)
Co-Ordinate system

88433 The line joining \((5,0)\) to \((10 \cos \theta, 10 \sin \theta)\) is divided internally in the ratio \(2: 3\) at \(P\). If \(\theta\) varies, then the locus of \(P\) is

1 a straight line
2 a pair of straight lines
3 a circle
4 None of the above
Co-Ordinate system

88429 A straight rod of length 9 units slides with its ends \(A, B\) always on the \(X\) and \(Y\)-axis respectively. Then the locus of the centroid of \(\triangle O A B\) is :

1 \(x^{2}+y^{2}=3\)
2 \(x^{2}+y^{2}=9\)
3 \(x^{2}+y^{2}=1\)
4 \(\mathrm{x}^{2}+\mathrm{y}^{2}=81\)
Co-Ordinate system

88430 The locus of a point of intersection of two lines \(x \sqrt{3}-y=k \sqrt{3}\) and \(\sqrt{3} k x+k y=\sqrt{3}, k \in R\), describes

1 an ellipse
2 a hyperbola
3 a pair of lines
4 a parabola
Co-Ordinate system

88431 A variable plane remains at constant distance \(p\) from the origin. If it meets the coordinate axes at the points \(A, B, C\) then the locus of the Centroid of \(\triangle \mathrm{ABC}\) is

1 \(\mathrm{x}^{-2}+\mathrm{y}^{-2}+\mathrm{z}^{-2}=9 \mathrm{p}^{-2}\)
2 \(\mathrm{x}^{-3}+\mathrm{y}^{-3}+\mathrm{z}^{-3}=9 \mathrm{p}^{-3}\)
3 \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=9 \mathrm{p}^{2}\)
4 \(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}=9 \mathrm{p}^{3}\)
Co-Ordinate system

88432 The centres of a set of circles, each of radius 3, lie on the circle \(x^{2}+y^{2}=25\). The locus of any point in the set is

1 \(4 \leq x^{2}+y^{2} \leq 64\)
2 \(x^{2}+y^{2} \leq 25\)
3 \(\mathrm{x}^{2}+\mathrm{y}^{2} \geq 25\)
4 \(3 \leq x^{2}+y^{2} \geq 9\)
Co-Ordinate system

88433 The line joining \((5,0)\) to \((10 \cos \theta, 10 \sin \theta)\) is divided internally in the ratio \(2: 3\) at \(P\). If \(\theta\) varies, then the locus of \(P\) is

1 a straight line
2 a pair of straight lines
3 a circle
4 None of the above