88388
Let \(m_{1}, m_{2}\) be the slopes of two adjacent sides of a square of side a such that \(\mathbf{a}^{2}+11 a+\) \(3\left(\mathbf{m}_{2}^{2}+\mathbf{m}_{2}^{2}\right)=220\). If one vertex of the square a
is \((10(\cos \alpha-\sin \alpha), 10(\sin \alpha+\cos \alpha))\), where \(\alpha \in\left(0, \frac{\pi}{2}\right)\) and the equation of one diagonal is \((\cos \alpha-\sin \alpha) \mathrm{x}+(\sin \alpha+\cos \alpha) \mathrm{y}=10\), then 72 \(\left(\sin ^{4} \alpha+\cos ^{4} \alpha\right)+\mathbf{a}^{2}-3 a+13\) is equal to:
88388
Let \(m_{1}, m_{2}\) be the slopes of two adjacent sides of a square of side a such that \(\mathbf{a}^{2}+11 a+\) \(3\left(\mathbf{m}_{2}^{2}+\mathbf{m}_{2}^{2}\right)=220\). If one vertex of the square a
is \((10(\cos \alpha-\sin \alpha), 10(\sin \alpha+\cos \alpha))\), where \(\alpha \in\left(0, \frac{\pi}{2}\right)\) and the equation of one diagonal is \((\cos \alpha-\sin \alpha) \mathrm{x}+(\sin \alpha+\cos \alpha) \mathrm{y}=10\), then 72 \(\left(\sin ^{4} \alpha+\cos ^{4} \alpha\right)+\mathbf{a}^{2}-3 a+13\) is equal to:
88388
Let \(m_{1}, m_{2}\) be the slopes of two adjacent sides of a square of side a such that \(\mathbf{a}^{2}+11 a+\) \(3\left(\mathbf{m}_{2}^{2}+\mathbf{m}_{2}^{2}\right)=220\). If one vertex of the square a
is \((10(\cos \alpha-\sin \alpha), 10(\sin \alpha+\cos \alpha))\), where \(\alpha \in\left(0, \frac{\pi}{2}\right)\) and the equation of one diagonal is \((\cos \alpha-\sin \alpha) \mathrm{x}+(\sin \alpha+\cos \alpha) \mathrm{y}=10\), then 72 \(\left(\sin ^{4} \alpha+\cos ^{4} \alpha\right)+\mathbf{a}^{2}-3 a+13\) is equal to:
88388
Let \(m_{1}, m_{2}\) be the slopes of two adjacent sides of a square of side a such that \(\mathbf{a}^{2}+11 a+\) \(3\left(\mathbf{m}_{2}^{2}+\mathbf{m}_{2}^{2}\right)=220\). If one vertex of the square a
is \((10(\cos \alpha-\sin \alpha), 10(\sin \alpha+\cos \alpha))\), where \(\alpha \in\left(0, \frac{\pi}{2}\right)\) and the equation of one diagonal is \((\cos \alpha-\sin \alpha) \mathrm{x}+(\sin \alpha+\cos \alpha) \mathrm{y}=10\), then 72 \(\left(\sin ^{4} \alpha+\cos ^{4} \alpha\right)+\mathbf{a}^{2}-3 a+13\) is equal to: