1 An equilateral triangle
2 A right angled triangle
3 An isosceles triangle
4 An obtuse angled triangle
Explanation:
(A) :

Given,
\(y= \pm \sqrt{3} x, \quad y=1\)
\(y=\sqrt{3} x \tag{i}\)
\(y=-\sqrt{3} x \tag{ii}\)
\(y=1 \tag{iii}\)
From, equation (i) \& (ii), we get-
\(\mathrm{x}=0, \mathrm{y}=0\)
So, \(\quad \mathrm{c}=(0,0)\)
Again, equation (ii) \& (iii), we get-
\(\mathrm{x}=-\frac{1}{\sqrt{3}}, \mathrm{y}=1\)
So, \(\quad \mathrm{B}=\left(-\frac{1}{\sqrt{3}}, 1\right)\)
Similarly, \(\mathrm{A}=\left(\frac{1}{\sqrt{3}}, 1\right)\)
From distance formula,
\(\mathrm{BC}=\mathrm{AB}=\mathrm{AC}=2 / \sqrt{3}\)
So, it is an equilateral triangle.