Linear Combination of Vector
Vector Algebra

88176 The equation of a plane passing through the intersection of two planes \(x+2 y-3 z+2=0\) and \(6 x+y+z+1=0\) and parallel to the line \(\mathbf{x}-\mathbf{1}=\mathbf{y}+\mathbf{2}=\mathbf{7}-\mathrm{z}\) is

1 \(5 x+y+4 z=1\)
2 \(5 x-y+4 z=1\)
3 \(5 \mathrm{x}+\mathrm{y}+4 \mathrm{z}+1=0\)
4 \(5 \mathrm{x}-\mathrm{y}+4 \mathrm{z}+1=0\)
Vector Algebra

88177 If the vectors \(x \hat{i}-3 \hat{j}+7 \hat{k}\) and \(\hat{i}+y \hat{j}-z \hat{k}\) collinear, then the value of \(\frac{xy^2}{z}\) is equal to

1 \(\frac{9}{7}\)
2 \(\frac{7}{9}\)
3 \(\frac{-7}{9}\)
4 \(\frac{-9}{7}\)
Vector Algebra

88178 If line joining points \(A\) and \(B\) having position vectors \(6 \vec{a}-\mathbf{4} \vec{b}+4 \vec{c}\) and \(-4 \vec{c}\) respectively, and the line joining the points \(C\) and \(D\) having position vectors \(-\vec{a}-2 \vec{b}-3 \vec{c}\) and \(\vec{a}+2 \vec{b}-5 \vec{c}\) intersect, then their point of intersection is

1 \(\mathrm{B}\)
2 \(\mathrm{C}\)
3 \(\mathrm{D}\)
4 \(\mathrm{A}\)
Vector Algebra

88179 If points \(P(4,5, x), Q(3, y, 4)\) and \(R(5,8,0)\) are collinear, then the value of \(x+y\) is

1 -4
2 3
3 5
4 4
Vector Algebra

88176 The equation of a plane passing through the intersection of two planes \(x+2 y-3 z+2=0\) and \(6 x+y+z+1=0\) and parallel to the line \(\mathbf{x}-\mathbf{1}=\mathbf{y}+\mathbf{2}=\mathbf{7}-\mathrm{z}\) is

1 \(5 x+y+4 z=1\)
2 \(5 x-y+4 z=1\)
3 \(5 \mathrm{x}+\mathrm{y}+4 \mathrm{z}+1=0\)
4 \(5 \mathrm{x}-\mathrm{y}+4 \mathrm{z}+1=0\)
Vector Algebra

88177 If the vectors \(x \hat{i}-3 \hat{j}+7 \hat{k}\) and \(\hat{i}+y \hat{j}-z \hat{k}\) collinear, then the value of \(\frac{xy^2}{z}\) is equal to

1 \(\frac{9}{7}\)
2 \(\frac{7}{9}\)
3 \(\frac{-7}{9}\)
4 \(\frac{-9}{7}\)
Vector Algebra

88178 If line joining points \(A\) and \(B\) having position vectors \(6 \vec{a}-\mathbf{4} \vec{b}+4 \vec{c}\) and \(-4 \vec{c}\) respectively, and the line joining the points \(C\) and \(D\) having position vectors \(-\vec{a}-2 \vec{b}-3 \vec{c}\) and \(\vec{a}+2 \vec{b}-5 \vec{c}\) intersect, then their point of intersection is

1 \(\mathrm{B}\)
2 \(\mathrm{C}\)
3 \(\mathrm{D}\)
4 \(\mathrm{A}\)
Vector Algebra

88179 If points \(P(4,5, x), Q(3, y, 4)\) and \(R(5,8,0)\) are collinear, then the value of \(x+y\) is

1 -4
2 3
3 5
4 4
Vector Algebra

88176 The equation of a plane passing through the intersection of two planes \(x+2 y-3 z+2=0\) and \(6 x+y+z+1=0\) and parallel to the line \(\mathbf{x}-\mathbf{1}=\mathbf{y}+\mathbf{2}=\mathbf{7}-\mathrm{z}\) is

1 \(5 x+y+4 z=1\)
2 \(5 x-y+4 z=1\)
3 \(5 \mathrm{x}+\mathrm{y}+4 \mathrm{z}+1=0\)
4 \(5 \mathrm{x}-\mathrm{y}+4 \mathrm{z}+1=0\)
Vector Algebra

88177 If the vectors \(x \hat{i}-3 \hat{j}+7 \hat{k}\) and \(\hat{i}+y \hat{j}-z \hat{k}\) collinear, then the value of \(\frac{xy^2}{z}\) is equal to

1 \(\frac{9}{7}\)
2 \(\frac{7}{9}\)
3 \(\frac{-7}{9}\)
4 \(\frac{-9}{7}\)
Vector Algebra

88178 If line joining points \(A\) and \(B\) having position vectors \(6 \vec{a}-\mathbf{4} \vec{b}+4 \vec{c}\) and \(-4 \vec{c}\) respectively, and the line joining the points \(C\) and \(D\) having position vectors \(-\vec{a}-2 \vec{b}-3 \vec{c}\) and \(\vec{a}+2 \vec{b}-5 \vec{c}\) intersect, then their point of intersection is

1 \(\mathrm{B}\)
2 \(\mathrm{C}\)
3 \(\mathrm{D}\)
4 \(\mathrm{A}\)
Vector Algebra

88179 If points \(P(4,5, x), Q(3, y, 4)\) and \(R(5,8,0)\) are collinear, then the value of \(x+y\) is

1 -4
2 3
3 5
4 4
Vector Algebra

88176 The equation of a plane passing through the intersection of two planes \(x+2 y-3 z+2=0\) and \(6 x+y+z+1=0\) and parallel to the line \(\mathbf{x}-\mathbf{1}=\mathbf{y}+\mathbf{2}=\mathbf{7}-\mathrm{z}\) is

1 \(5 x+y+4 z=1\)
2 \(5 x-y+4 z=1\)
3 \(5 \mathrm{x}+\mathrm{y}+4 \mathrm{z}+1=0\)
4 \(5 \mathrm{x}-\mathrm{y}+4 \mathrm{z}+1=0\)
Vector Algebra

88177 If the vectors \(x \hat{i}-3 \hat{j}+7 \hat{k}\) and \(\hat{i}+y \hat{j}-z \hat{k}\) collinear, then the value of \(\frac{xy^2}{z}\) is equal to

1 \(\frac{9}{7}\)
2 \(\frac{7}{9}\)
3 \(\frac{-7}{9}\)
4 \(\frac{-9}{7}\)
Vector Algebra

88178 If line joining points \(A\) and \(B\) having position vectors \(6 \vec{a}-\mathbf{4} \vec{b}+4 \vec{c}\) and \(-4 \vec{c}\) respectively, and the line joining the points \(C\) and \(D\) having position vectors \(-\vec{a}-2 \vec{b}-3 \vec{c}\) and \(\vec{a}+2 \vec{b}-5 \vec{c}\) intersect, then their point of intersection is

1 \(\mathrm{B}\)
2 \(\mathrm{C}\)
3 \(\mathrm{D}\)
4 \(\mathrm{A}\)
Vector Algebra

88179 If points \(P(4,5, x), Q(3, y, 4)\) and \(R(5,8,0)\) are collinear, then the value of \(x+y\) is

1 -4
2 3
3 5
4 4