88014
Let
\(\mathbf{u}=\hat{\mathbf{i}}+\hat{\mathbf{j}}, \mathbf{v}=\hat{\mathbf{i}}-\hat{\mathbf{j}}\) and \(w=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{k}\). If \(\hat{\mathbf{n}}\) is \(a\) unit vector such that \(\mathbf{u} \times \hat{\mathbf{n}}=\mathbf{0}\) and \(\mathbf{v} \times \hat{\mathbf{n}}=\mathbf{0}\), then \(|\mathbf{w} \times \hat{\mathbf{n}}|\) is equal to
88014
Let
\(\mathbf{u}=\hat{\mathbf{i}}+\hat{\mathbf{j}}, \mathbf{v}=\hat{\mathbf{i}}-\hat{\mathbf{j}}\) and \(w=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{k}\). If \(\hat{\mathbf{n}}\) is \(a\) unit vector such that \(\mathbf{u} \times \hat{\mathbf{n}}=\mathbf{0}\) and \(\mathbf{v} \times \hat{\mathbf{n}}=\mathbf{0}\), then \(|\mathbf{w} \times \hat{\mathbf{n}}|\) is equal to
88014
Let
\(\mathbf{u}=\hat{\mathbf{i}}+\hat{\mathbf{j}}, \mathbf{v}=\hat{\mathbf{i}}-\hat{\mathbf{j}}\) and \(w=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{k}\). If \(\hat{\mathbf{n}}\) is \(a\) unit vector such that \(\mathbf{u} \times \hat{\mathbf{n}}=\mathbf{0}\) and \(\mathbf{v} \times \hat{\mathbf{n}}=\mathbf{0}\), then \(|\mathbf{w} \times \hat{\mathbf{n}}|\) is equal to
88014
Let
\(\mathbf{u}=\hat{\mathbf{i}}+\hat{\mathbf{j}}, \mathbf{v}=\hat{\mathbf{i}}-\hat{\mathbf{j}}\) and \(w=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{k}\). If \(\hat{\mathbf{n}}\) is \(a\) unit vector such that \(\mathbf{u} \times \hat{\mathbf{n}}=\mathbf{0}\) and \(\mathbf{v} \times \hat{\mathbf{n}}=\mathbf{0}\), then \(|\mathbf{w} \times \hat{\mathbf{n}}|\) is equal to
88014
Let
\(\mathbf{u}=\hat{\mathbf{i}}+\hat{\mathbf{j}}, \mathbf{v}=\hat{\mathbf{i}}-\hat{\mathbf{j}}\) and \(w=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{k}\). If \(\hat{\mathbf{n}}\) is \(a\) unit vector such that \(\mathbf{u} \times \hat{\mathbf{n}}=\mathbf{0}\) and \(\mathbf{v} \times \hat{\mathbf{n}}=\mathbf{0}\), then \(|\mathbf{w} \times \hat{\mathbf{n}}|\) is equal to