Scalar (dot) Product of Vector
Vector Algebra

87980 If \(\vec{A}=4 \hat{i}+3 \hat{j}+\hat{k}, \vec{B}=2 \hat{i}+\hat{j}+2 \hat{k}\), the angle between \(\vec{A}\) and \(\vec{B}\) is given by

1 \(\sin ^{-1}\left(\frac{\sqrt{185}}{3}\right)\)
2 \(\cos ^{-1}\left(\frac{\sqrt{185}}{3}\right)\)
3 \(-\sin ^{-1}\left(\frac{\sqrt{185}}{3}\right)\)
4 \(\cos ^{-1}\left(\frac{13}{3 \sqrt{26}}\right)\)
Vector Algebra

87981 A unit vector perpendicular to \(-\hat{i}+2 \hat{j}+2 \hat{k}\) and making equal angles with \(x\) and \(y\) axes can be

1 \(\frac{1}{3}(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
2 \(\frac{1}{3}(2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
3 \(\frac{1}{3}(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})\)
4 \(\frac{1}{3}(2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}})\)
Vector Algebra

87982 If \(\theta\) be the angle between vectors \(\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}\) and \(\vec{b}=3 \hat{i}+2 \hat{j}+\hat{k}\), then \(\cos \theta\) equals

1 \(5 / 7\)
2 \(6 / 7\)
3 \(4 / 7\)
4 \(1 / 2\)
Vector Algebra

87997 If \(|\vec{a} \times \vec{b}|=5\) and \(|\vec{a} \cdot \vec{b}|=3\), then \(|\vec{a}|^2|\vec{b}|^2\) is equal to

1 16
2 31
3 25
4 34
Vector Algebra

87983 If \(\vec{a}, \vec{b}, \vec{c}\) are non-coplanar vectors and \(\lambda\) is a real number, then the vectors \(\vec{a}+2 \vec{b}+3 \vec{c}\), \(\lambda \vec{b}+4 \vec{c}\) and \((2 \lambda-1) \vec{c}\) are non coplanar for

1 no value of \(\lambda\)
2 all except one value of \(\lambda\)
3 all except two values of \(\lambda\)
4 all values of \(\lambda\)
Vector Algebra

87980 If \(\vec{A}=4 \hat{i}+3 \hat{j}+\hat{k}, \vec{B}=2 \hat{i}+\hat{j}+2 \hat{k}\), the angle between \(\vec{A}\) and \(\vec{B}\) is given by

1 \(\sin ^{-1}\left(\frac{\sqrt{185}}{3}\right)\)
2 \(\cos ^{-1}\left(\frac{\sqrt{185}}{3}\right)\)
3 \(-\sin ^{-1}\left(\frac{\sqrt{185}}{3}\right)\)
4 \(\cos ^{-1}\left(\frac{13}{3 \sqrt{26}}\right)\)
Vector Algebra

87981 A unit vector perpendicular to \(-\hat{i}+2 \hat{j}+2 \hat{k}\) and making equal angles with \(x\) and \(y\) axes can be

1 \(\frac{1}{3}(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
2 \(\frac{1}{3}(2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
3 \(\frac{1}{3}(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})\)
4 \(\frac{1}{3}(2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}})\)
Vector Algebra

87982 If \(\theta\) be the angle between vectors \(\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}\) and \(\vec{b}=3 \hat{i}+2 \hat{j}+\hat{k}\), then \(\cos \theta\) equals

1 \(5 / 7\)
2 \(6 / 7\)
3 \(4 / 7\)
4 \(1 / 2\)
Vector Algebra

87997 If \(|\vec{a} \times \vec{b}|=5\) and \(|\vec{a} \cdot \vec{b}|=3\), then \(|\vec{a}|^2|\vec{b}|^2\) is equal to

1 16
2 31
3 25
4 34
Vector Algebra

87983 If \(\vec{a}, \vec{b}, \vec{c}\) are non-coplanar vectors and \(\lambda\) is a real number, then the vectors \(\vec{a}+2 \vec{b}+3 \vec{c}\), \(\lambda \vec{b}+4 \vec{c}\) and \((2 \lambda-1) \vec{c}\) are non coplanar for

1 no value of \(\lambda\)
2 all except one value of \(\lambda\)
3 all except two values of \(\lambda\)
4 all values of \(\lambda\)
Vector Algebra

87980 If \(\vec{A}=4 \hat{i}+3 \hat{j}+\hat{k}, \vec{B}=2 \hat{i}+\hat{j}+2 \hat{k}\), the angle between \(\vec{A}\) and \(\vec{B}\) is given by

1 \(\sin ^{-1}\left(\frac{\sqrt{185}}{3}\right)\)
2 \(\cos ^{-1}\left(\frac{\sqrt{185}}{3}\right)\)
3 \(-\sin ^{-1}\left(\frac{\sqrt{185}}{3}\right)\)
4 \(\cos ^{-1}\left(\frac{13}{3 \sqrt{26}}\right)\)
Vector Algebra

87981 A unit vector perpendicular to \(-\hat{i}+2 \hat{j}+2 \hat{k}\) and making equal angles with \(x\) and \(y\) axes can be

1 \(\frac{1}{3}(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
2 \(\frac{1}{3}(2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
3 \(\frac{1}{3}(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})\)
4 \(\frac{1}{3}(2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}})\)
Vector Algebra

87982 If \(\theta\) be the angle between vectors \(\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}\) and \(\vec{b}=3 \hat{i}+2 \hat{j}+\hat{k}\), then \(\cos \theta\) equals

1 \(5 / 7\)
2 \(6 / 7\)
3 \(4 / 7\)
4 \(1 / 2\)
Vector Algebra

87997 If \(|\vec{a} \times \vec{b}|=5\) and \(|\vec{a} \cdot \vec{b}|=3\), then \(|\vec{a}|^2|\vec{b}|^2\) is equal to

1 16
2 31
3 25
4 34
Vector Algebra

87983 If \(\vec{a}, \vec{b}, \vec{c}\) are non-coplanar vectors and \(\lambda\) is a real number, then the vectors \(\vec{a}+2 \vec{b}+3 \vec{c}\), \(\lambda \vec{b}+4 \vec{c}\) and \((2 \lambda-1) \vec{c}\) are non coplanar for

1 no value of \(\lambda\)
2 all except one value of \(\lambda\)
3 all except two values of \(\lambda\)
4 all values of \(\lambda\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87980 If \(\vec{A}=4 \hat{i}+3 \hat{j}+\hat{k}, \vec{B}=2 \hat{i}+\hat{j}+2 \hat{k}\), the angle between \(\vec{A}\) and \(\vec{B}\) is given by

1 \(\sin ^{-1}\left(\frac{\sqrt{185}}{3}\right)\)
2 \(\cos ^{-1}\left(\frac{\sqrt{185}}{3}\right)\)
3 \(-\sin ^{-1}\left(\frac{\sqrt{185}}{3}\right)\)
4 \(\cos ^{-1}\left(\frac{13}{3 \sqrt{26}}\right)\)
Vector Algebra

87981 A unit vector perpendicular to \(-\hat{i}+2 \hat{j}+2 \hat{k}\) and making equal angles with \(x\) and \(y\) axes can be

1 \(\frac{1}{3}(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
2 \(\frac{1}{3}(2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
3 \(\frac{1}{3}(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})\)
4 \(\frac{1}{3}(2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}})\)
Vector Algebra

87982 If \(\theta\) be the angle between vectors \(\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}\) and \(\vec{b}=3 \hat{i}+2 \hat{j}+\hat{k}\), then \(\cos \theta\) equals

1 \(5 / 7\)
2 \(6 / 7\)
3 \(4 / 7\)
4 \(1 / 2\)
Vector Algebra

87997 If \(|\vec{a} \times \vec{b}|=5\) and \(|\vec{a} \cdot \vec{b}|=3\), then \(|\vec{a}|^2|\vec{b}|^2\) is equal to

1 16
2 31
3 25
4 34
Vector Algebra

87983 If \(\vec{a}, \vec{b}, \vec{c}\) are non-coplanar vectors and \(\lambda\) is a real number, then the vectors \(\vec{a}+2 \vec{b}+3 \vec{c}\), \(\lambda \vec{b}+4 \vec{c}\) and \((2 \lambda-1) \vec{c}\) are non coplanar for

1 no value of \(\lambda\)
2 all except one value of \(\lambda\)
3 all except two values of \(\lambda\)
4 all values of \(\lambda\)
Vector Algebra

87980 If \(\vec{A}=4 \hat{i}+3 \hat{j}+\hat{k}, \vec{B}=2 \hat{i}+\hat{j}+2 \hat{k}\), the angle between \(\vec{A}\) and \(\vec{B}\) is given by

1 \(\sin ^{-1}\left(\frac{\sqrt{185}}{3}\right)\)
2 \(\cos ^{-1}\left(\frac{\sqrt{185}}{3}\right)\)
3 \(-\sin ^{-1}\left(\frac{\sqrt{185}}{3}\right)\)
4 \(\cos ^{-1}\left(\frac{13}{3 \sqrt{26}}\right)\)
Vector Algebra

87981 A unit vector perpendicular to \(-\hat{i}+2 \hat{j}+2 \hat{k}\) and making equal angles with \(x\) and \(y\) axes can be

1 \(\frac{1}{3}(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
2 \(\frac{1}{3}(2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
3 \(\frac{1}{3}(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})\)
4 \(\frac{1}{3}(2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}})\)
Vector Algebra

87982 If \(\theta\) be the angle between vectors \(\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}\) and \(\vec{b}=3 \hat{i}+2 \hat{j}+\hat{k}\), then \(\cos \theta\) equals

1 \(5 / 7\)
2 \(6 / 7\)
3 \(4 / 7\)
4 \(1 / 2\)
Vector Algebra

87997 If \(|\vec{a} \times \vec{b}|=5\) and \(|\vec{a} \cdot \vec{b}|=3\), then \(|\vec{a}|^2|\vec{b}|^2\) is equal to

1 16
2 31
3 25
4 34
Vector Algebra

87983 If \(\vec{a}, \vec{b}, \vec{c}\) are non-coplanar vectors and \(\lambda\) is a real number, then the vectors \(\vec{a}+2 \vec{b}+3 \vec{c}\), \(\lambda \vec{b}+4 \vec{c}\) and \((2 \lambda-1) \vec{c}\) are non coplanar for

1 no value of \(\lambda\)
2 all except one value of \(\lambda\)
3 all except two values of \(\lambda\)
4 all values of \(\lambda\)