Scalar (dot) Product of Vector
Vector Algebra

87976 The two vectors \(\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=4 \hat{i}-\lambda \hat{j}+6 \hat{k}\) are parallel if \(\lambda\) is

1 2
2 -3
3 3
4 -2
Vector Algebra

87977 If \(\vec{a}=3 \hat{i}-5 \hat{j}\) and \(\vec{b}=6 \hat{i}+3 \hat{j}\) are two vectors and \(\overrightarrow{\mathbf{c}}\) is a vector such that \(\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}\), then \(|\overrightarrow{\mathbf{a}}|:|\overrightarrow{\mathbf{b}}|:|\overrightarrow{\mathbf{c}}|=\)

1 \(\sqrt{34}: \sqrt{45}: \sqrt{39}\)
2 \(\sqrt{34}: \sqrt{45}: 39\)
3 \(34: 39: 45\)
4 \(39: 35: 34\)
Vector Algebra

87978 If \(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}=\overrightarrow{\mathbf{0}},|\overrightarrow{\mathrm{a}}|=3,|\overrightarrow{\mathrm{b}}|=5,|\overrightarrow{\mathbf{c}}|=7\), then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(\frac{\pi}{6}\)
2 \(\frac{2 \pi}{5}\)
3 \(\frac{5 \pi}{3}\)
4 \(\frac{\pi}{3}\)
Vector Algebra

87979 The non-zero vectors \(\vec{a}, \vec{b}\) and \(\vec{c}\) are related by \(\vec{a}=8 \vec{b}, \vec{c}=-7 \vec{b}\). Then the angle between \(\overrightarrow{\mathbf{a}}\) and \(\overrightarrow{\mathbf{c}}\) is

1 0
2 \(\pi / 4\)
3 \(\pi / 2\)
4 \(\pi\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87976 The two vectors \(\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=4 \hat{i}-\lambda \hat{j}+6 \hat{k}\) are parallel if \(\lambda\) is

1 2
2 -3
3 3
4 -2
Vector Algebra

87977 If \(\vec{a}=3 \hat{i}-5 \hat{j}\) and \(\vec{b}=6 \hat{i}+3 \hat{j}\) are two vectors and \(\overrightarrow{\mathbf{c}}\) is a vector such that \(\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}\), then \(|\overrightarrow{\mathbf{a}}|:|\overrightarrow{\mathbf{b}}|:|\overrightarrow{\mathbf{c}}|=\)

1 \(\sqrt{34}: \sqrt{45}: \sqrt{39}\)
2 \(\sqrt{34}: \sqrt{45}: 39\)
3 \(34: 39: 45\)
4 \(39: 35: 34\)
Vector Algebra

87978 If \(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}=\overrightarrow{\mathbf{0}},|\overrightarrow{\mathrm{a}}|=3,|\overrightarrow{\mathrm{b}}|=5,|\overrightarrow{\mathbf{c}}|=7\), then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(\frac{\pi}{6}\)
2 \(\frac{2 \pi}{5}\)
3 \(\frac{5 \pi}{3}\)
4 \(\frac{\pi}{3}\)
Vector Algebra

87979 The non-zero vectors \(\vec{a}, \vec{b}\) and \(\vec{c}\) are related by \(\vec{a}=8 \vec{b}, \vec{c}=-7 \vec{b}\). Then the angle between \(\overrightarrow{\mathbf{a}}\) and \(\overrightarrow{\mathbf{c}}\) is

1 0
2 \(\pi / 4\)
3 \(\pi / 2\)
4 \(\pi\)
Vector Algebra

87976 The two vectors \(\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=4 \hat{i}-\lambda \hat{j}+6 \hat{k}\) are parallel if \(\lambda\) is

1 2
2 -3
3 3
4 -2
Vector Algebra

87977 If \(\vec{a}=3 \hat{i}-5 \hat{j}\) and \(\vec{b}=6 \hat{i}+3 \hat{j}\) are two vectors and \(\overrightarrow{\mathbf{c}}\) is a vector such that \(\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}\), then \(|\overrightarrow{\mathbf{a}}|:|\overrightarrow{\mathbf{b}}|:|\overrightarrow{\mathbf{c}}|=\)

1 \(\sqrt{34}: \sqrt{45}: \sqrt{39}\)
2 \(\sqrt{34}: \sqrt{45}: 39\)
3 \(34: 39: 45\)
4 \(39: 35: 34\)
Vector Algebra

87978 If \(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}=\overrightarrow{\mathbf{0}},|\overrightarrow{\mathrm{a}}|=3,|\overrightarrow{\mathrm{b}}|=5,|\overrightarrow{\mathbf{c}}|=7\), then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(\frac{\pi}{6}\)
2 \(\frac{2 \pi}{5}\)
3 \(\frac{5 \pi}{3}\)
4 \(\frac{\pi}{3}\)
Vector Algebra

87979 The non-zero vectors \(\vec{a}, \vec{b}\) and \(\vec{c}\) are related by \(\vec{a}=8 \vec{b}, \vec{c}=-7 \vec{b}\). Then the angle between \(\overrightarrow{\mathbf{a}}\) and \(\overrightarrow{\mathbf{c}}\) is

1 0
2 \(\pi / 4\)
3 \(\pi / 2\)
4 \(\pi\)
Vector Algebra

87976 The two vectors \(\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=4 \hat{i}-\lambda \hat{j}+6 \hat{k}\) are parallel if \(\lambda\) is

1 2
2 -3
3 3
4 -2
Vector Algebra

87977 If \(\vec{a}=3 \hat{i}-5 \hat{j}\) and \(\vec{b}=6 \hat{i}+3 \hat{j}\) are two vectors and \(\overrightarrow{\mathbf{c}}\) is a vector such that \(\overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}\), then \(|\overrightarrow{\mathbf{a}}|:|\overrightarrow{\mathbf{b}}|:|\overrightarrow{\mathbf{c}}|=\)

1 \(\sqrt{34}: \sqrt{45}: \sqrt{39}\)
2 \(\sqrt{34}: \sqrt{45}: 39\)
3 \(34: 39: 45\)
4 \(39: 35: 34\)
Vector Algebra

87978 If \(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}=\overrightarrow{\mathbf{0}},|\overrightarrow{\mathrm{a}}|=3,|\overrightarrow{\mathrm{b}}|=5,|\overrightarrow{\mathbf{c}}|=7\), then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(\frac{\pi}{6}\)
2 \(\frac{2 \pi}{5}\)
3 \(\frac{5 \pi}{3}\)
4 \(\frac{\pi}{3}\)
Vector Algebra

87979 The non-zero vectors \(\vec{a}, \vec{b}\) and \(\vec{c}\) are related by \(\vec{a}=8 \vec{b}, \vec{c}=-7 \vec{b}\). Then the angle between \(\overrightarrow{\mathbf{a}}\) and \(\overrightarrow{\mathbf{c}}\) is

1 0
2 \(\pi / 4\)
3 \(\pi / 2\)
4 \(\pi\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here