Scalar (dot) Product of Vector
Vector Algebra

87972 If the vectors \(4 \hat{i}+11 \hat{j}+m \hat{k}, 7 \hat{i}+2 \hat{j}+6 \hat{k}\) and \(\hat{i}+5 \hat{j}+4 \hat{k}\) are coplanar, then \(m\) is

1 38
2 0
3 10
4 -10
Vector Algebra

87973 Value of \(\left|\begin{array}{ll}\vec{a} . \vec{a} \vec{a} \cdot \vec{b} \\ \vec{a} . \vec{b} \vec{b} . \vec{b}\end{array}\right|\) is equal to

1 0
2 \(a^2 b^2\)
3 \((\vec{a} \times \vec{b})^2\)
4 \((\vec{a} \cdot \vec{b})^2\)
Vector Algebra

87974 If \(\hat{e}_1, \hat{e}_2\) and \(\hat{e}_1+\hat{e}_2\) are unit vectors, then angle between \(\hat{\mathbf{e}}_1\) and \(\hat{\mathbf{e}}_2\) is

1 \(90^{\circ}\)
2 \(45^{\circ}\)
3 \(120^{\circ}\)
4 \(135^{\circ}\)
Vector Algebra

87975 Area of a parallelogram whose diagonals are \(2 \hat{i}+3 \hat{j}+6 \hat{k}\) and \(3 \hat{i}-6 \hat{j}+2 \hat{k}\)

1 49 sq. units
2 \(\frac{49}{2}\) sq. units
3 \(\frac{49}{4}\) sq. units
4 \(\frac{49}{3}\) sq. units
Vector Algebra

87972 If the vectors \(4 \hat{i}+11 \hat{j}+m \hat{k}, 7 \hat{i}+2 \hat{j}+6 \hat{k}\) and \(\hat{i}+5 \hat{j}+4 \hat{k}\) are coplanar, then \(m\) is

1 38
2 0
3 10
4 -10
Vector Algebra

87973 Value of \(\left|\begin{array}{ll}\vec{a} . \vec{a} \vec{a} \cdot \vec{b} \\ \vec{a} . \vec{b} \vec{b} . \vec{b}\end{array}\right|\) is equal to

1 0
2 \(a^2 b^2\)
3 \((\vec{a} \times \vec{b})^2\)
4 \((\vec{a} \cdot \vec{b})^2\)
Vector Algebra

87974 If \(\hat{e}_1, \hat{e}_2\) and \(\hat{e}_1+\hat{e}_2\) are unit vectors, then angle between \(\hat{\mathbf{e}}_1\) and \(\hat{\mathbf{e}}_2\) is

1 \(90^{\circ}\)
2 \(45^{\circ}\)
3 \(120^{\circ}\)
4 \(135^{\circ}\)
Vector Algebra

87975 Area of a parallelogram whose diagonals are \(2 \hat{i}+3 \hat{j}+6 \hat{k}\) and \(3 \hat{i}-6 \hat{j}+2 \hat{k}\)

1 49 sq. units
2 \(\frac{49}{2}\) sq. units
3 \(\frac{49}{4}\) sq. units
4 \(\frac{49}{3}\) sq. units
Vector Algebra

87972 If the vectors \(4 \hat{i}+11 \hat{j}+m \hat{k}, 7 \hat{i}+2 \hat{j}+6 \hat{k}\) and \(\hat{i}+5 \hat{j}+4 \hat{k}\) are coplanar, then \(m\) is

1 38
2 0
3 10
4 -10
Vector Algebra

87973 Value of \(\left|\begin{array}{ll}\vec{a} . \vec{a} \vec{a} \cdot \vec{b} \\ \vec{a} . \vec{b} \vec{b} . \vec{b}\end{array}\right|\) is equal to

1 0
2 \(a^2 b^2\)
3 \((\vec{a} \times \vec{b})^2\)
4 \((\vec{a} \cdot \vec{b})^2\)
Vector Algebra

87974 If \(\hat{e}_1, \hat{e}_2\) and \(\hat{e}_1+\hat{e}_2\) are unit vectors, then angle between \(\hat{\mathbf{e}}_1\) and \(\hat{\mathbf{e}}_2\) is

1 \(90^{\circ}\)
2 \(45^{\circ}\)
3 \(120^{\circ}\)
4 \(135^{\circ}\)
Vector Algebra

87975 Area of a parallelogram whose diagonals are \(2 \hat{i}+3 \hat{j}+6 \hat{k}\) and \(3 \hat{i}-6 \hat{j}+2 \hat{k}\)

1 49 sq. units
2 \(\frac{49}{2}\) sq. units
3 \(\frac{49}{4}\) sq. units
4 \(\frac{49}{3}\) sq. units
Vector Algebra

87972 If the vectors \(4 \hat{i}+11 \hat{j}+m \hat{k}, 7 \hat{i}+2 \hat{j}+6 \hat{k}\) and \(\hat{i}+5 \hat{j}+4 \hat{k}\) are coplanar, then \(m\) is

1 38
2 0
3 10
4 -10
Vector Algebra

87973 Value of \(\left|\begin{array}{ll}\vec{a} . \vec{a} \vec{a} \cdot \vec{b} \\ \vec{a} . \vec{b} \vec{b} . \vec{b}\end{array}\right|\) is equal to

1 0
2 \(a^2 b^2\)
3 \((\vec{a} \times \vec{b})^2\)
4 \((\vec{a} \cdot \vec{b})^2\)
Vector Algebra

87974 If \(\hat{e}_1, \hat{e}_2\) and \(\hat{e}_1+\hat{e}_2\) are unit vectors, then angle between \(\hat{\mathbf{e}}_1\) and \(\hat{\mathbf{e}}_2\) is

1 \(90^{\circ}\)
2 \(45^{\circ}\)
3 \(120^{\circ}\)
4 \(135^{\circ}\)
Vector Algebra

87975 Area of a parallelogram whose diagonals are \(2 \hat{i}+3 \hat{j}+6 \hat{k}\) and \(3 \hat{i}-6 \hat{j}+2 \hat{k}\)

1 49 sq. units
2 \(\frac{49}{2}\) sq. units
3 \(\frac{49}{4}\) sq. units
4 \(\frac{49}{3}\) sq. units