Scalar (dot) Product of Vector
Vector Algebra

88140 The angle between the vectors \(2 \overline{\mathrm{k}}-3 \overline{\mathrm{j}}\) and \(\overline{\mathrm{i}}-2 \overline{\mathrm{k}}\) is

1 \(\cos ^{-1}\left(\frac{8}{\sqrt{65}}\right)\)
2 \(\cos ^{-1}\left(\frac{-4}{\sqrt{65}}\right)\)
3 \(\cos ^{-1}\left(\frac{2}{\sqrt{65}}\right)\)
4 \(\cos ^{-1}\left(\frac{3}{\sqrt{13}}\right)\)
Vector Algebra

88164 If \((2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\overline{0}\), then \(\lambda\) and \(\mu\) are respectively

1 \(\frac{17}{2}, 3\)
2 \(3, \frac{27}{2}\)
3 \(\frac{27}{2}, 3\)
4 \(3, \frac{17}{2}\)
Vector Algebra

87954 If \(\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+5 \hat{k}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=4 \hat{\mathrm{i}}-\hat{\mathbf{j}}+2 \hat{\mathrm{k}} \quad\) and \(\overrightarrow{\mathbf{d}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}\), then \((\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}) \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{d}})=\)

1 12
2 30
3 10
4 20
Vector Algebra

87955 If \(\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-4 \hat{k}\) and \(\vec{c}=\hat{i}+\hat{j}+\hat{k}\), the \((\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}})=\)

1 -74
2 64
3 74
4 -64
Vector Algebra

88140 The angle between the vectors \(2 \overline{\mathrm{k}}-3 \overline{\mathrm{j}}\) and \(\overline{\mathrm{i}}-2 \overline{\mathrm{k}}\) is

1 \(\cos ^{-1}\left(\frac{8}{\sqrt{65}}\right)\)
2 \(\cos ^{-1}\left(\frac{-4}{\sqrt{65}}\right)\)
3 \(\cos ^{-1}\left(\frac{2}{\sqrt{65}}\right)\)
4 \(\cos ^{-1}\left(\frac{3}{\sqrt{13}}\right)\)
Vector Algebra

88164 If \((2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\overline{0}\), then \(\lambda\) and \(\mu\) are respectively

1 \(\frac{17}{2}, 3\)
2 \(3, \frac{27}{2}\)
3 \(\frac{27}{2}, 3\)
4 \(3, \frac{17}{2}\)
Vector Algebra

87954 If \(\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+5 \hat{k}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=4 \hat{\mathrm{i}}-\hat{\mathbf{j}}+2 \hat{\mathrm{k}} \quad\) and \(\overrightarrow{\mathbf{d}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}\), then \((\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}) \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{d}})=\)

1 12
2 30
3 10
4 20
Vector Algebra

87955 If \(\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-4 \hat{k}\) and \(\vec{c}=\hat{i}+\hat{j}+\hat{k}\), the \((\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}})=\)

1 -74
2 64
3 74
4 -64
Vector Algebra

88140 The angle between the vectors \(2 \overline{\mathrm{k}}-3 \overline{\mathrm{j}}\) and \(\overline{\mathrm{i}}-2 \overline{\mathrm{k}}\) is

1 \(\cos ^{-1}\left(\frac{8}{\sqrt{65}}\right)\)
2 \(\cos ^{-1}\left(\frac{-4}{\sqrt{65}}\right)\)
3 \(\cos ^{-1}\left(\frac{2}{\sqrt{65}}\right)\)
4 \(\cos ^{-1}\left(\frac{3}{\sqrt{13}}\right)\)
Vector Algebra

88164 If \((2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\overline{0}\), then \(\lambda\) and \(\mu\) are respectively

1 \(\frac{17}{2}, 3\)
2 \(3, \frac{27}{2}\)
3 \(\frac{27}{2}, 3\)
4 \(3, \frac{17}{2}\)
Vector Algebra

87954 If \(\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+5 \hat{k}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=4 \hat{\mathrm{i}}-\hat{\mathbf{j}}+2 \hat{\mathrm{k}} \quad\) and \(\overrightarrow{\mathbf{d}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}\), then \((\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}) \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{d}})=\)

1 12
2 30
3 10
4 20
Vector Algebra

87955 If \(\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-4 \hat{k}\) and \(\vec{c}=\hat{i}+\hat{j}+\hat{k}\), the \((\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}})=\)

1 -74
2 64
3 74
4 -64
Vector Algebra

88140 The angle between the vectors \(2 \overline{\mathrm{k}}-3 \overline{\mathrm{j}}\) and \(\overline{\mathrm{i}}-2 \overline{\mathrm{k}}\) is

1 \(\cos ^{-1}\left(\frac{8}{\sqrt{65}}\right)\)
2 \(\cos ^{-1}\left(\frac{-4}{\sqrt{65}}\right)\)
3 \(\cos ^{-1}\left(\frac{2}{\sqrt{65}}\right)\)
4 \(\cos ^{-1}\left(\frac{3}{\sqrt{13}}\right)\)
Vector Algebra

88164 If \((2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\overline{0}\), then \(\lambda\) and \(\mu\) are respectively

1 \(\frac{17}{2}, 3\)
2 \(3, \frac{27}{2}\)
3 \(\frac{27}{2}, 3\)
4 \(3, \frac{17}{2}\)
Vector Algebra

87954 If \(\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+5 \hat{k}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=4 \hat{\mathrm{i}}-\hat{\mathbf{j}}+2 \hat{\mathrm{k}} \quad\) and \(\overrightarrow{\mathbf{d}}=\hat{\mathbf{i}}-\hat{\mathbf{j}}\), then \((\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}) \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{d}})=\)

1 12
2 30
3 10
4 20
Vector Algebra

87955 If \(\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-4 \hat{k}\) and \(\vec{c}=\hat{i}+\hat{j}+\hat{k}\), the \((\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \cdot(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}})=\)

1 -74
2 64
3 74
4 -64