Angle and Magnitude of Unit Vector
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87907 If three unit vectors \(\vec{a}, \vec{b}, \vec{c}\) satisfy \(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}\), then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(\frac{2 \pi}{3}\)
2 \(\frac{5 \pi}{6}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{6}\)
Vector Algebra

87908 For any vector \(x\), where \(\hat{i}, \hat{j}, \hat{k}\) have their usual meanings the value of \(|\mathbf{x} \times \hat{\mathbf{i}}|^2+|\mathbf{x} \times \hat{\mathbf{j}}|^2+|\mathbf{x} \times \hat{\mathbf{k}}|^2\) where \(\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}\) have their usual meanings, is equal to

1 \(|\mathrm{x}|^2\)
2 \(2|\mathrm{x}|^2\)
3 \(3|\mathrm{x}|^2\)
4 \(4|\mathrm{x}|^2\)
Vector Algebra

87909 If \(\mathbf{a}(\vec{\alpha} \times \vec{\beta})+b(\vec{\beta} \times \vec{\gamma})+c(\vec{\gamma} \times \vec{\alpha})=\overrightarrow{0}\) where \(a, b, c\) are non-zero scalars, then the vectors \(\vec{\alpha}, \vec{\beta}, \vec{\gamma}\) are

1 Parallel
2 Non-coplanar
3 Coplanar
4 Mutually perpendicular
Vector Algebra

87910 If \(\vec{a}\) and \(\vec{b}\) are unit vectors such that \(\vec{a}+\vec{b}\) is also a unit vector, then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(75^{\circ}\)
2 \(60^{\circ}\)
3 \(120^{\circ}\)
4 \(135^{\circ}\)
Vector Algebra

87907 If three unit vectors \(\vec{a}, \vec{b}, \vec{c}\) satisfy \(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}\), then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(\frac{2 \pi}{3}\)
2 \(\frac{5 \pi}{6}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{6}\)
Vector Algebra

87908 For any vector \(x\), where \(\hat{i}, \hat{j}, \hat{k}\) have their usual meanings the value of \(|\mathbf{x} \times \hat{\mathbf{i}}|^2+|\mathbf{x} \times \hat{\mathbf{j}}|^2+|\mathbf{x} \times \hat{\mathbf{k}}|^2\) where \(\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}\) have their usual meanings, is equal to

1 \(|\mathrm{x}|^2\)
2 \(2|\mathrm{x}|^2\)
3 \(3|\mathrm{x}|^2\)
4 \(4|\mathrm{x}|^2\)
Vector Algebra

87909 If \(\mathbf{a}(\vec{\alpha} \times \vec{\beta})+b(\vec{\beta} \times \vec{\gamma})+c(\vec{\gamma} \times \vec{\alpha})=\overrightarrow{0}\) where \(a, b, c\) are non-zero scalars, then the vectors \(\vec{\alpha}, \vec{\beta}, \vec{\gamma}\) are

1 Parallel
2 Non-coplanar
3 Coplanar
4 Mutually perpendicular
Vector Algebra

87910 If \(\vec{a}\) and \(\vec{b}\) are unit vectors such that \(\vec{a}+\vec{b}\) is also a unit vector, then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(75^{\circ}\)
2 \(60^{\circ}\)
3 \(120^{\circ}\)
4 \(135^{\circ}\)
Vector Algebra

87907 If three unit vectors \(\vec{a}, \vec{b}, \vec{c}\) satisfy \(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}\), then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(\frac{2 \pi}{3}\)
2 \(\frac{5 \pi}{6}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{6}\)
Vector Algebra

87908 For any vector \(x\), where \(\hat{i}, \hat{j}, \hat{k}\) have their usual meanings the value of \(|\mathbf{x} \times \hat{\mathbf{i}}|^2+|\mathbf{x} \times \hat{\mathbf{j}}|^2+|\mathbf{x} \times \hat{\mathbf{k}}|^2\) where \(\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}\) have their usual meanings, is equal to

1 \(|\mathrm{x}|^2\)
2 \(2|\mathrm{x}|^2\)
3 \(3|\mathrm{x}|^2\)
4 \(4|\mathrm{x}|^2\)
Vector Algebra

87909 If \(\mathbf{a}(\vec{\alpha} \times \vec{\beta})+b(\vec{\beta} \times \vec{\gamma})+c(\vec{\gamma} \times \vec{\alpha})=\overrightarrow{0}\) where \(a, b, c\) are non-zero scalars, then the vectors \(\vec{\alpha}, \vec{\beta}, \vec{\gamma}\) are

1 Parallel
2 Non-coplanar
3 Coplanar
4 Mutually perpendicular
Vector Algebra

87910 If \(\vec{a}\) and \(\vec{b}\) are unit vectors such that \(\vec{a}+\vec{b}\) is also a unit vector, then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(75^{\circ}\)
2 \(60^{\circ}\)
3 \(120^{\circ}\)
4 \(135^{\circ}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87907 If three unit vectors \(\vec{a}, \vec{b}, \vec{c}\) satisfy \(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}\), then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(\frac{2 \pi}{3}\)
2 \(\frac{5 \pi}{6}\)
3 \(\frac{\pi}{3}\)
4 \(\frac{\pi}{6}\)
Vector Algebra

87908 For any vector \(x\), where \(\hat{i}, \hat{j}, \hat{k}\) have their usual meanings the value of \(|\mathbf{x} \times \hat{\mathbf{i}}|^2+|\mathbf{x} \times \hat{\mathbf{j}}|^2+|\mathbf{x} \times \hat{\mathbf{k}}|^2\) where \(\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}\) have their usual meanings, is equal to

1 \(|\mathrm{x}|^2\)
2 \(2|\mathrm{x}|^2\)
3 \(3|\mathrm{x}|^2\)
4 \(4|\mathrm{x}|^2\)
Vector Algebra

87909 If \(\mathbf{a}(\vec{\alpha} \times \vec{\beta})+b(\vec{\beta} \times \vec{\gamma})+c(\vec{\gamma} \times \vec{\alpha})=\overrightarrow{0}\) where \(a, b, c\) are non-zero scalars, then the vectors \(\vec{\alpha}, \vec{\beta}, \vec{\gamma}\) are

1 Parallel
2 Non-coplanar
3 Coplanar
4 Mutually perpendicular
Vector Algebra

87910 If \(\vec{a}\) and \(\vec{b}\) are unit vectors such that \(\vec{a}+\vec{b}\) is also a unit vector, then the angle between \(\vec{a}\) and \(\vec{b}\) is

1 \(75^{\circ}\)
2 \(60^{\circ}\)
3 \(120^{\circ}\)
4 \(135^{\circ}\)