87783 If \(\vec{a}=\hat{i}-\hat{j}-\hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+\hat{k}\) and \(p_1, p_2\) are the orthogonal projection vectors of \(\vec{a}\) on \(\vec{b}\) and \(\vec{b}\) on a respectively, then \(\left(\mathbf{p}_1+\mathbf{p}_2\right) \cdot\left(\mathbf{p}_1-\mathbf{p}_2\right)=\)
87783 If \(\vec{a}=\hat{i}-\hat{j}-\hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+\hat{k}\) and \(p_1, p_2\) are the orthogonal projection vectors of \(\vec{a}\) on \(\vec{b}\) and \(\vec{b}\) on a respectively, then \(\left(\mathbf{p}_1+\mathbf{p}_2\right) \cdot\left(\mathbf{p}_1-\mathbf{p}_2\right)=\)
87783 If \(\vec{a}=\hat{i}-\hat{j}-\hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+\hat{k}\) and \(p_1, p_2\) are the orthogonal projection vectors of \(\vec{a}\) on \(\vec{b}\) and \(\vec{b}\) on a respectively, then \(\left(\mathbf{p}_1+\mathbf{p}_2\right) \cdot\left(\mathbf{p}_1-\mathbf{p}_2\right)=\)
87783 If \(\vec{a}=\hat{i}-\hat{j}-\hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+\hat{k}\) and \(p_1, p_2\) are the orthogonal projection vectors of \(\vec{a}\) on \(\vec{b}\) and \(\vec{b}\) on a respectively, then \(\left(\mathbf{p}_1+\mathbf{p}_2\right) \cdot\left(\mathbf{p}_1-\mathbf{p}_2\right)=\)