Addition and Projection of Vectors
Vector Algebra

87757 If \(|\vec{a}|=15,|\vec{b}|=12\) and \(|\vec{a}+\vec{b}|=20\), then \(|\vec{a}-\vec{b}|=\)

1 \(\sqrt{338}\)
2 338
3 769
4 \(\sqrt{769}\)
Vector Algebra

87758 The vectors \(3 \hat{i}+5 \hat{j}+2 \hat{k}, 2 \hat{i}-3 \hat{j}-5 \hat{k}\) and \(5 \hat{i}+2 \hat{j}-3 \hat{k}\) form the sides of

1 isosceles triangle
2 right triangle
3 scalene triangle
4 equilateral triangle
Vector Algebra

87759 Forces 5P, 4P, P and 2P act along the sides \(A B\), \(B C, C D, D A\) of a square ABCD taken in order. Then the resultant is equal to

1 \(2 \mathrm{P}\)
2 \(\sqrt{5} \mathrm{P}\)
3 \(\sqrt{46} \mathrm{P}\)
4 \(2 \sqrt{5} \mathrm{P}\)
Vector Algebra

87760 If \(\vec{a}, \vec{b}, \vec{c}\) are mutually perpendicular unit vectors, then \(|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}}|\) equals

1 1
2 \(\sqrt{2}\)
3 \(\sqrt{3}\)
4 2
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87757 If \(|\vec{a}|=15,|\vec{b}|=12\) and \(|\vec{a}+\vec{b}|=20\), then \(|\vec{a}-\vec{b}|=\)

1 \(\sqrt{338}\)
2 338
3 769
4 \(\sqrt{769}\)
Vector Algebra

87758 The vectors \(3 \hat{i}+5 \hat{j}+2 \hat{k}, 2 \hat{i}-3 \hat{j}-5 \hat{k}\) and \(5 \hat{i}+2 \hat{j}-3 \hat{k}\) form the sides of

1 isosceles triangle
2 right triangle
3 scalene triangle
4 equilateral triangle
Vector Algebra

87759 Forces 5P, 4P, P and 2P act along the sides \(A B\), \(B C, C D, D A\) of a square ABCD taken in order. Then the resultant is equal to

1 \(2 \mathrm{P}\)
2 \(\sqrt{5} \mathrm{P}\)
3 \(\sqrt{46} \mathrm{P}\)
4 \(2 \sqrt{5} \mathrm{P}\)
Vector Algebra

87760 If \(\vec{a}, \vec{b}, \vec{c}\) are mutually perpendicular unit vectors, then \(|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}}|\) equals

1 1
2 \(\sqrt{2}\)
3 \(\sqrt{3}\)
4 2
Vector Algebra

87757 If \(|\vec{a}|=15,|\vec{b}|=12\) and \(|\vec{a}+\vec{b}|=20\), then \(|\vec{a}-\vec{b}|=\)

1 \(\sqrt{338}\)
2 338
3 769
4 \(\sqrt{769}\)
Vector Algebra

87758 The vectors \(3 \hat{i}+5 \hat{j}+2 \hat{k}, 2 \hat{i}-3 \hat{j}-5 \hat{k}\) and \(5 \hat{i}+2 \hat{j}-3 \hat{k}\) form the sides of

1 isosceles triangle
2 right triangle
3 scalene triangle
4 equilateral triangle
Vector Algebra

87759 Forces 5P, 4P, P and 2P act along the sides \(A B\), \(B C, C D, D A\) of a square ABCD taken in order. Then the resultant is equal to

1 \(2 \mathrm{P}\)
2 \(\sqrt{5} \mathrm{P}\)
3 \(\sqrt{46} \mathrm{P}\)
4 \(2 \sqrt{5} \mathrm{P}\)
Vector Algebra

87760 If \(\vec{a}, \vec{b}, \vec{c}\) are mutually perpendicular unit vectors, then \(|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}}|\) equals

1 1
2 \(\sqrt{2}\)
3 \(\sqrt{3}\)
4 2
Vector Algebra

87757 If \(|\vec{a}|=15,|\vec{b}|=12\) and \(|\vec{a}+\vec{b}|=20\), then \(|\vec{a}-\vec{b}|=\)

1 \(\sqrt{338}\)
2 338
3 769
4 \(\sqrt{769}\)
Vector Algebra

87758 The vectors \(3 \hat{i}+5 \hat{j}+2 \hat{k}, 2 \hat{i}-3 \hat{j}-5 \hat{k}\) and \(5 \hat{i}+2 \hat{j}-3 \hat{k}\) form the sides of

1 isosceles triangle
2 right triangle
3 scalene triangle
4 equilateral triangle
Vector Algebra

87759 Forces 5P, 4P, P and 2P act along the sides \(A B\), \(B C, C D, D A\) of a square ABCD taken in order. Then the resultant is equal to

1 \(2 \mathrm{P}\)
2 \(\sqrt{5} \mathrm{P}\)
3 \(\sqrt{46} \mathrm{P}\)
4 \(2 \sqrt{5} \mathrm{P}\)
Vector Algebra

87760 If \(\vec{a}, \vec{b}, \vec{c}\) are mutually perpendicular unit vectors, then \(|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}}|\) equals

1 1
2 \(\sqrt{2}\)
3 \(\sqrt{3}\)
4 2