Addition and Projection of Vectors
Vector Algebra

87753 The projection of \(\vec{a}=2 \hat{i}+3 \hat{j}-2 \hat{k}\) on \(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\) is :

1 \(\frac{1}{\sqrt{14}}\)
2 \(\frac{2}{\sqrt{14}}\)
3 \(\sqrt{14}\)
4 \(\frac{-2}{\sqrt{14}}\)
Vector Algebra

87754 A vector \(\vec{a}\) makes equal acute angles on the coordinate axis. Then the projection of vector \(\overrightarrow{\mathrm{b}}=5 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-\hat{\mathbf{k}}\) on \(\overrightarrow{\mathbf{a}}\) is

1 \(\frac{11}{15}\)
2 \(\frac{11}{\sqrt{3}}\)
3 \(\frac{4}{5}\)
4 \(\frac{3}{5 \sqrt{3}}\)
Vector Algebra

87763 If \(\vec{a}, \vec{b}\) and \(\vec{c}\) are unit vectors, then \(|\vec{a}-\vec{b}|^2+|\vec{b}-\vec{c}|^2+|\vec{c}-\vec{a}|^2\) does not exceed

1 12
2 9
3 8
4 6
Vector Algebra

87755 If the vectors \(\overrightarrow{A B}=3 \hat{i}+4 \hat{k}\) and \(\overrightarrow{\mathrm{AC}}=5 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{k}\) are the sides of a triangle \(\mathrm{ABC}\), then the length of the median through \(\mathrm{A}\) is

1 \(\sqrt{45}\)
2 \(\sqrt{18}\)
3 \(\sqrt{72}\)
4 \(\sqrt{33}\)
Vector Algebra

87756 If \(\vec{a}, \vec{b}, \vec{c}\) are three non-zero vectors such that each one of them are perpendicular to the sum of the other two vectors, then the value of \(|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|^2\) is

1 \(|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2\)
2 \(|\overrightarrow{\mathrm{a}}|+|\overrightarrow{\mathrm{b}}|+|\overrightarrow{\mathrm{c}}|\)
3 \(2\left(\left.\vec{a}\right|^2+|\vec{b}|^2+|\vec{c}|^2\right)\)
4 \(\frac{1}{2}\left(|\overrightarrow{\mathrm{a}}|^2+|\overrightarrow{\mathrm{b}}|^2+|\mathrm{c}|^2\right)\)
Vector Algebra

87753 The projection of \(\vec{a}=2 \hat{i}+3 \hat{j}-2 \hat{k}\) on \(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\) is :

1 \(\frac{1}{\sqrt{14}}\)
2 \(\frac{2}{\sqrt{14}}\)
3 \(\sqrt{14}\)
4 \(\frac{-2}{\sqrt{14}}\)
Vector Algebra

87754 A vector \(\vec{a}\) makes equal acute angles on the coordinate axis. Then the projection of vector \(\overrightarrow{\mathrm{b}}=5 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-\hat{\mathbf{k}}\) on \(\overrightarrow{\mathbf{a}}\) is

1 \(\frac{11}{15}\)
2 \(\frac{11}{\sqrt{3}}\)
3 \(\frac{4}{5}\)
4 \(\frac{3}{5 \sqrt{3}}\)
Vector Algebra

87763 If \(\vec{a}, \vec{b}\) and \(\vec{c}\) are unit vectors, then \(|\vec{a}-\vec{b}|^2+|\vec{b}-\vec{c}|^2+|\vec{c}-\vec{a}|^2\) does not exceed

1 12
2 9
3 8
4 6
Vector Algebra

87755 If the vectors \(\overrightarrow{A B}=3 \hat{i}+4 \hat{k}\) and \(\overrightarrow{\mathrm{AC}}=5 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{k}\) are the sides of a triangle \(\mathrm{ABC}\), then the length of the median through \(\mathrm{A}\) is

1 \(\sqrt{45}\)
2 \(\sqrt{18}\)
3 \(\sqrt{72}\)
4 \(\sqrt{33}\)
Vector Algebra

87756 If \(\vec{a}, \vec{b}, \vec{c}\) are three non-zero vectors such that each one of them are perpendicular to the sum of the other two vectors, then the value of \(|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|^2\) is

1 \(|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2\)
2 \(|\overrightarrow{\mathrm{a}}|+|\overrightarrow{\mathrm{b}}|+|\overrightarrow{\mathrm{c}}|\)
3 \(2\left(\left.\vec{a}\right|^2+|\vec{b}|^2+|\vec{c}|^2\right)\)
4 \(\frac{1}{2}\left(|\overrightarrow{\mathrm{a}}|^2+|\overrightarrow{\mathrm{b}}|^2+|\mathrm{c}|^2\right)\)
Vector Algebra

87753 The projection of \(\vec{a}=2 \hat{i}+3 \hat{j}-2 \hat{k}\) on \(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\) is :

1 \(\frac{1}{\sqrt{14}}\)
2 \(\frac{2}{\sqrt{14}}\)
3 \(\sqrt{14}\)
4 \(\frac{-2}{\sqrt{14}}\)
Vector Algebra

87754 A vector \(\vec{a}\) makes equal acute angles on the coordinate axis. Then the projection of vector \(\overrightarrow{\mathrm{b}}=5 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-\hat{\mathbf{k}}\) on \(\overrightarrow{\mathbf{a}}\) is

1 \(\frac{11}{15}\)
2 \(\frac{11}{\sqrt{3}}\)
3 \(\frac{4}{5}\)
4 \(\frac{3}{5 \sqrt{3}}\)
Vector Algebra

87763 If \(\vec{a}, \vec{b}\) and \(\vec{c}\) are unit vectors, then \(|\vec{a}-\vec{b}|^2+|\vec{b}-\vec{c}|^2+|\vec{c}-\vec{a}|^2\) does not exceed

1 12
2 9
3 8
4 6
Vector Algebra

87755 If the vectors \(\overrightarrow{A B}=3 \hat{i}+4 \hat{k}\) and \(\overrightarrow{\mathrm{AC}}=5 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{k}\) are the sides of a triangle \(\mathrm{ABC}\), then the length of the median through \(\mathrm{A}\) is

1 \(\sqrt{45}\)
2 \(\sqrt{18}\)
3 \(\sqrt{72}\)
4 \(\sqrt{33}\)
Vector Algebra

87756 If \(\vec{a}, \vec{b}, \vec{c}\) are three non-zero vectors such that each one of them are perpendicular to the sum of the other two vectors, then the value of \(|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|^2\) is

1 \(|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2\)
2 \(|\overrightarrow{\mathrm{a}}|+|\overrightarrow{\mathrm{b}}|+|\overrightarrow{\mathrm{c}}|\)
3 \(2\left(\left.\vec{a}\right|^2+|\vec{b}|^2+|\vec{c}|^2\right)\)
4 \(\frac{1}{2}\left(|\overrightarrow{\mathrm{a}}|^2+|\overrightarrow{\mathrm{b}}|^2+|\mathrm{c}|^2\right)\)
Vector Algebra

87753 The projection of \(\vec{a}=2 \hat{i}+3 \hat{j}-2 \hat{k}\) on \(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\) is :

1 \(\frac{1}{\sqrt{14}}\)
2 \(\frac{2}{\sqrt{14}}\)
3 \(\sqrt{14}\)
4 \(\frac{-2}{\sqrt{14}}\)
Vector Algebra

87754 A vector \(\vec{a}\) makes equal acute angles on the coordinate axis. Then the projection of vector \(\overrightarrow{\mathrm{b}}=5 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-\hat{\mathbf{k}}\) on \(\overrightarrow{\mathbf{a}}\) is

1 \(\frac{11}{15}\)
2 \(\frac{11}{\sqrt{3}}\)
3 \(\frac{4}{5}\)
4 \(\frac{3}{5 \sqrt{3}}\)
Vector Algebra

87763 If \(\vec{a}, \vec{b}\) and \(\vec{c}\) are unit vectors, then \(|\vec{a}-\vec{b}|^2+|\vec{b}-\vec{c}|^2+|\vec{c}-\vec{a}|^2\) does not exceed

1 12
2 9
3 8
4 6
Vector Algebra

87755 If the vectors \(\overrightarrow{A B}=3 \hat{i}+4 \hat{k}\) and \(\overrightarrow{\mathrm{AC}}=5 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{k}\) are the sides of a triangle \(\mathrm{ABC}\), then the length of the median through \(\mathrm{A}\) is

1 \(\sqrt{45}\)
2 \(\sqrt{18}\)
3 \(\sqrt{72}\)
4 \(\sqrt{33}\)
Vector Algebra

87756 If \(\vec{a}, \vec{b}, \vec{c}\) are three non-zero vectors such that each one of them are perpendicular to the sum of the other two vectors, then the value of \(|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|^2\) is

1 \(|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2\)
2 \(|\overrightarrow{\mathrm{a}}|+|\overrightarrow{\mathrm{b}}|+|\overrightarrow{\mathrm{c}}|\)
3 \(2\left(\left.\vec{a}\right|^2+|\vec{b}|^2+|\vec{c}|^2\right)\)
4 \(\frac{1}{2}\left(|\overrightarrow{\mathrm{a}}|^2+|\overrightarrow{\mathrm{b}}|^2+|\mathrm{c}|^2\right)\)
Vector Algebra

87753 The projection of \(\vec{a}=2 \hat{i}+3 \hat{j}-2 \hat{k}\) on \(\overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\) is :

1 \(\frac{1}{\sqrt{14}}\)
2 \(\frac{2}{\sqrt{14}}\)
3 \(\sqrt{14}\)
4 \(\frac{-2}{\sqrt{14}}\)
Vector Algebra

87754 A vector \(\vec{a}\) makes equal acute angles on the coordinate axis. Then the projection of vector \(\overrightarrow{\mathrm{b}}=5 \hat{\mathbf{i}}+7 \hat{\mathbf{j}}-\hat{\mathbf{k}}\) on \(\overrightarrow{\mathbf{a}}\) is

1 \(\frac{11}{15}\)
2 \(\frac{11}{\sqrt{3}}\)
3 \(\frac{4}{5}\)
4 \(\frac{3}{5 \sqrt{3}}\)
Vector Algebra

87763 If \(\vec{a}, \vec{b}\) and \(\vec{c}\) are unit vectors, then \(|\vec{a}-\vec{b}|^2+|\vec{b}-\vec{c}|^2+|\vec{c}-\vec{a}|^2\) does not exceed

1 12
2 9
3 8
4 6
Vector Algebra

87755 If the vectors \(\overrightarrow{A B}=3 \hat{i}+4 \hat{k}\) and \(\overrightarrow{\mathrm{AC}}=5 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+4 \hat{k}\) are the sides of a triangle \(\mathrm{ABC}\), then the length of the median through \(\mathrm{A}\) is

1 \(\sqrt{45}\)
2 \(\sqrt{18}\)
3 \(\sqrt{72}\)
4 \(\sqrt{33}\)
Vector Algebra

87756 If \(\vec{a}, \vec{b}, \vec{c}\) are three non-zero vectors such that each one of them are perpendicular to the sum of the other two vectors, then the value of \(|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}}|^2\) is

1 \(|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2\)
2 \(|\overrightarrow{\mathrm{a}}|+|\overrightarrow{\mathrm{b}}|+|\overrightarrow{\mathrm{c}}|\)
3 \(2\left(\left.\vec{a}\right|^2+|\vec{b}|^2+|\vec{c}|^2\right)\)
4 \(\frac{1}{2}\left(|\overrightarrow{\mathrm{a}}|^2+|\overrightarrow{\mathrm{b}}|^2+|\mathrm{c}|^2\right)\)