87748
Let
\(\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}\). A
vector in the plane of \(\vec{b}\) and \(\vec{c}\) whose projection on \(\vec{a}\) has the magnitude \(\sqrt{\frac{2}{3}}\), is
87748
Let
\(\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}\). A
vector in the plane of \(\vec{b}\) and \(\vec{c}\) whose projection on \(\vec{a}\) has the magnitude \(\sqrt{\frac{2}{3}}\), is
87748
Let
\(\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}\). A
vector in the plane of \(\vec{b}\) and \(\vec{c}\) whose projection on \(\vec{a}\) has the magnitude \(\sqrt{\frac{2}{3}}\), is
87748
Let
\(\overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}}, \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}\) and \(\overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}\). A
vector in the plane of \(\vec{b}\) and \(\vec{c}\) whose projection on \(\vec{a}\) has the magnitude \(\sqrt{\frac{2}{3}}\), is