Distance, Position and Section Formula of Vector
Vector Algebra

87680 For 3 points \(A(\vec{a}), B(\vec{b}), C(\vec{c})\)
if \(3 \vec{a}+2 \vec{b}-5 \vec{c}=0\), then

1 Point \(\mathrm{C}\) divides \(\mathrm{AB}\) externally in ratio \(3: 2\)
2 3 Points from \(\triangle \mathrm{ABC}\)
3 \(C\) is not mid-point of \(A B\)
4 \(C\) divides \(A B\) internally in ratio \(2: 3\)
Vector Algebra

87660 If \(\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}, \vec{b}=4 \hat{i}+5 \hat{j}+3 \hat{k}\)
and \(\overrightarrow{\mathbf{c}}=6 \hat{i}+\hat{j}+5 \hat{k}\) are the position vectors of the vertices of triangle \(A B C\) respectively, then the position vector of the intersection of the medians of the triangle \(A B C\) is

1 \(2 \hat{i}+3 \hat{j}+3 \hat{k}\)
2 \(4 \hat{i}+3 \hat{j}+3 \hat{k}\)
3 \(5 \hat{i}+3 \hat{j}+3 \hat{k}\)
4 \(3 \hat{i}+3 \hat{j}+4 \hat{k}\)
Vector Algebra

87679 Let \(A(3,5,6)\) and \(B(4,6,-3)\). Find ratio in which yz plane is dividing \(A B\).

1 \(3: 4\) externally
2 \(3: 4\) internally
3 \(4: 3\) externally
4 \(4: 3\) internally
Vector Algebra

87661 If the position vectors of the vertices, \(A, B, C\) of a triangle \(A B C\) are \(4 \hat{i}+7 \hat{j}+8 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}\) and \(2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\) respectively, then the position vector of the point where bisector of angel \(A\) meets \(B C\) is

1 \(\frac{1}{3}(6 \hat{\mathrm{i}}+11 \hat{\mathrm{j}}+15 \hat{\mathrm{k}})\)
2 \(\frac{1}{4}(8 \hat{\mathrm{i}}+14 \hat{\mathrm{j}}+19 \hat{\mathrm{k}})\)
3 \(\frac{1}{2}(4 \hat{i}+8 \hat{j}+11 \hat{k})\)
4 \(\frac{1}{3}(6 \hat{\mathrm{i}}+13 \hat{\mathrm{j}}+18 \hat{\mathrm{k}})\)
Vector Algebra

87662 In a quadrilateral \(\mathrm{ABCD}, \mathrm{M}\) and \(\mathrm{N}\) are the midpoints of the sides \(A B\) and \(C D\) respectively. If \(\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{BC}}=t \overrightarrow{\mathrm{MN}}\), then \(t=\)

1 \(\frac{1}{2}\)
2 \(\frac{3}{2}\)
3 2
4 4
Vector Algebra

87680 For 3 points \(A(\vec{a}), B(\vec{b}), C(\vec{c})\)
if \(3 \vec{a}+2 \vec{b}-5 \vec{c}=0\), then

1 Point \(\mathrm{C}\) divides \(\mathrm{AB}\) externally in ratio \(3: 2\)
2 3 Points from \(\triangle \mathrm{ABC}\)
3 \(C\) is not mid-point of \(A B\)
4 \(C\) divides \(A B\) internally in ratio \(2: 3\)
Vector Algebra

87660 If \(\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}, \vec{b}=4 \hat{i}+5 \hat{j}+3 \hat{k}\)
and \(\overrightarrow{\mathbf{c}}=6 \hat{i}+\hat{j}+5 \hat{k}\) are the position vectors of the vertices of triangle \(A B C\) respectively, then the position vector of the intersection of the medians of the triangle \(A B C\) is

1 \(2 \hat{i}+3 \hat{j}+3 \hat{k}\)
2 \(4 \hat{i}+3 \hat{j}+3 \hat{k}\)
3 \(5 \hat{i}+3 \hat{j}+3 \hat{k}\)
4 \(3 \hat{i}+3 \hat{j}+4 \hat{k}\)
Vector Algebra

87679 Let \(A(3,5,6)\) and \(B(4,6,-3)\). Find ratio in which yz plane is dividing \(A B\).

1 \(3: 4\) externally
2 \(3: 4\) internally
3 \(4: 3\) externally
4 \(4: 3\) internally
Vector Algebra

87661 If the position vectors of the vertices, \(A, B, C\) of a triangle \(A B C\) are \(4 \hat{i}+7 \hat{j}+8 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}\) and \(2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\) respectively, then the position vector of the point where bisector of angel \(A\) meets \(B C\) is

1 \(\frac{1}{3}(6 \hat{\mathrm{i}}+11 \hat{\mathrm{j}}+15 \hat{\mathrm{k}})\)
2 \(\frac{1}{4}(8 \hat{\mathrm{i}}+14 \hat{\mathrm{j}}+19 \hat{\mathrm{k}})\)
3 \(\frac{1}{2}(4 \hat{i}+8 \hat{j}+11 \hat{k})\)
4 \(\frac{1}{3}(6 \hat{\mathrm{i}}+13 \hat{\mathrm{j}}+18 \hat{\mathrm{k}})\)
Vector Algebra

87662 In a quadrilateral \(\mathrm{ABCD}, \mathrm{M}\) and \(\mathrm{N}\) are the midpoints of the sides \(A B\) and \(C D\) respectively. If \(\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{BC}}=t \overrightarrow{\mathrm{MN}}\), then \(t=\)

1 \(\frac{1}{2}\)
2 \(\frac{3}{2}\)
3 2
4 4
Vector Algebra

87680 For 3 points \(A(\vec{a}), B(\vec{b}), C(\vec{c})\)
if \(3 \vec{a}+2 \vec{b}-5 \vec{c}=0\), then

1 Point \(\mathrm{C}\) divides \(\mathrm{AB}\) externally in ratio \(3: 2\)
2 3 Points from \(\triangle \mathrm{ABC}\)
3 \(C\) is not mid-point of \(A B\)
4 \(C\) divides \(A B\) internally in ratio \(2: 3\)
Vector Algebra

87660 If \(\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}, \vec{b}=4 \hat{i}+5 \hat{j}+3 \hat{k}\)
and \(\overrightarrow{\mathbf{c}}=6 \hat{i}+\hat{j}+5 \hat{k}\) are the position vectors of the vertices of triangle \(A B C\) respectively, then the position vector of the intersection of the medians of the triangle \(A B C\) is

1 \(2 \hat{i}+3 \hat{j}+3 \hat{k}\)
2 \(4 \hat{i}+3 \hat{j}+3 \hat{k}\)
3 \(5 \hat{i}+3 \hat{j}+3 \hat{k}\)
4 \(3 \hat{i}+3 \hat{j}+4 \hat{k}\)
Vector Algebra

87679 Let \(A(3,5,6)\) and \(B(4,6,-3)\). Find ratio in which yz plane is dividing \(A B\).

1 \(3: 4\) externally
2 \(3: 4\) internally
3 \(4: 3\) externally
4 \(4: 3\) internally
Vector Algebra

87661 If the position vectors of the vertices, \(A, B, C\) of a triangle \(A B C\) are \(4 \hat{i}+7 \hat{j}+8 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}\) and \(2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\) respectively, then the position vector of the point where bisector of angel \(A\) meets \(B C\) is

1 \(\frac{1}{3}(6 \hat{\mathrm{i}}+11 \hat{\mathrm{j}}+15 \hat{\mathrm{k}})\)
2 \(\frac{1}{4}(8 \hat{\mathrm{i}}+14 \hat{\mathrm{j}}+19 \hat{\mathrm{k}})\)
3 \(\frac{1}{2}(4 \hat{i}+8 \hat{j}+11 \hat{k})\)
4 \(\frac{1}{3}(6 \hat{\mathrm{i}}+13 \hat{\mathrm{j}}+18 \hat{\mathrm{k}})\)
Vector Algebra

87662 In a quadrilateral \(\mathrm{ABCD}, \mathrm{M}\) and \(\mathrm{N}\) are the midpoints of the sides \(A B\) and \(C D\) respectively. If \(\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{BC}}=t \overrightarrow{\mathrm{MN}}\), then \(t=\)

1 \(\frac{1}{2}\)
2 \(\frac{3}{2}\)
3 2
4 4
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Vector Algebra

87680 For 3 points \(A(\vec{a}), B(\vec{b}), C(\vec{c})\)
if \(3 \vec{a}+2 \vec{b}-5 \vec{c}=0\), then

1 Point \(\mathrm{C}\) divides \(\mathrm{AB}\) externally in ratio \(3: 2\)
2 3 Points from \(\triangle \mathrm{ABC}\)
3 \(C\) is not mid-point of \(A B\)
4 \(C\) divides \(A B\) internally in ratio \(2: 3\)
Vector Algebra

87660 If \(\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}, \vec{b}=4 \hat{i}+5 \hat{j}+3 \hat{k}\)
and \(\overrightarrow{\mathbf{c}}=6 \hat{i}+\hat{j}+5 \hat{k}\) are the position vectors of the vertices of triangle \(A B C\) respectively, then the position vector of the intersection of the medians of the triangle \(A B C\) is

1 \(2 \hat{i}+3 \hat{j}+3 \hat{k}\)
2 \(4 \hat{i}+3 \hat{j}+3 \hat{k}\)
3 \(5 \hat{i}+3 \hat{j}+3 \hat{k}\)
4 \(3 \hat{i}+3 \hat{j}+4 \hat{k}\)
Vector Algebra

87679 Let \(A(3,5,6)\) and \(B(4,6,-3)\). Find ratio in which yz plane is dividing \(A B\).

1 \(3: 4\) externally
2 \(3: 4\) internally
3 \(4: 3\) externally
4 \(4: 3\) internally
Vector Algebra

87661 If the position vectors of the vertices, \(A, B, C\) of a triangle \(A B C\) are \(4 \hat{i}+7 \hat{j}+8 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}\) and \(2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\) respectively, then the position vector of the point where bisector of angel \(A\) meets \(B C\) is

1 \(\frac{1}{3}(6 \hat{\mathrm{i}}+11 \hat{\mathrm{j}}+15 \hat{\mathrm{k}})\)
2 \(\frac{1}{4}(8 \hat{\mathrm{i}}+14 \hat{\mathrm{j}}+19 \hat{\mathrm{k}})\)
3 \(\frac{1}{2}(4 \hat{i}+8 \hat{j}+11 \hat{k})\)
4 \(\frac{1}{3}(6 \hat{\mathrm{i}}+13 \hat{\mathrm{j}}+18 \hat{\mathrm{k}})\)
Vector Algebra

87662 In a quadrilateral \(\mathrm{ABCD}, \mathrm{M}\) and \(\mathrm{N}\) are the midpoints of the sides \(A B\) and \(C D\) respectively. If \(\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{BC}}=t \overrightarrow{\mathrm{MN}}\), then \(t=\)

1 \(\frac{1}{2}\)
2 \(\frac{3}{2}\)
3 2
4 4
Vector Algebra

87680 For 3 points \(A(\vec{a}), B(\vec{b}), C(\vec{c})\)
if \(3 \vec{a}+2 \vec{b}-5 \vec{c}=0\), then

1 Point \(\mathrm{C}\) divides \(\mathrm{AB}\) externally in ratio \(3: 2\)
2 3 Points from \(\triangle \mathrm{ABC}\)
3 \(C\) is not mid-point of \(A B\)
4 \(C\) divides \(A B\) internally in ratio \(2: 3\)
Vector Algebra

87660 If \(\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}, \vec{b}=4 \hat{i}+5 \hat{j}+3 \hat{k}\)
and \(\overrightarrow{\mathbf{c}}=6 \hat{i}+\hat{j}+5 \hat{k}\) are the position vectors of the vertices of triangle \(A B C\) respectively, then the position vector of the intersection of the medians of the triangle \(A B C\) is

1 \(2 \hat{i}+3 \hat{j}+3 \hat{k}\)
2 \(4 \hat{i}+3 \hat{j}+3 \hat{k}\)
3 \(5 \hat{i}+3 \hat{j}+3 \hat{k}\)
4 \(3 \hat{i}+3 \hat{j}+4 \hat{k}\)
Vector Algebra

87679 Let \(A(3,5,6)\) and \(B(4,6,-3)\). Find ratio in which yz plane is dividing \(A B\).

1 \(3: 4\) externally
2 \(3: 4\) internally
3 \(4: 3\) externally
4 \(4: 3\) internally
Vector Algebra

87661 If the position vectors of the vertices, \(A, B, C\) of a triangle \(A B C\) are \(4 \hat{i}+7 \hat{j}+8 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}\) and \(2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\) respectively, then the position vector of the point where bisector of angel \(A\) meets \(B C\) is

1 \(\frac{1}{3}(6 \hat{\mathrm{i}}+11 \hat{\mathrm{j}}+15 \hat{\mathrm{k}})\)
2 \(\frac{1}{4}(8 \hat{\mathrm{i}}+14 \hat{\mathrm{j}}+19 \hat{\mathrm{k}})\)
3 \(\frac{1}{2}(4 \hat{i}+8 \hat{j}+11 \hat{k})\)
4 \(\frac{1}{3}(6 \hat{\mathrm{i}}+13 \hat{\mathrm{j}}+18 \hat{\mathrm{k}})\)
Vector Algebra

87662 In a quadrilateral \(\mathrm{ABCD}, \mathrm{M}\) and \(\mathrm{N}\) are the midpoints of the sides \(A B\) and \(C D\) respectively. If \(\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{BC}}=t \overrightarrow{\mathrm{MN}}\), then \(t=\)

1 \(\frac{1}{2}\)
2 \(\frac{3}{2}\)
3 2
4 4