87660
If \(\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}, \vec{b}=4 \hat{i}+5 \hat{j}+3 \hat{k}\)
and \(\overrightarrow{\mathbf{c}}=6 \hat{i}+\hat{j}+5 \hat{k}\) are the position vectors of the vertices of triangle \(A B C\) respectively, then the position vector of the intersection of the medians of the triangle \(A B C\) is
87661 If the position vectors of the vertices, \(A, B, C\) of a triangle \(A B C\) are \(4 \hat{i}+7 \hat{j}+8 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}\) and \(2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\) respectively, then the position vector of the point where bisector of angel \(A\) meets \(B C\) is
87660
If \(\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}, \vec{b}=4 \hat{i}+5 \hat{j}+3 \hat{k}\)
and \(\overrightarrow{\mathbf{c}}=6 \hat{i}+\hat{j}+5 \hat{k}\) are the position vectors of the vertices of triangle \(A B C\) respectively, then the position vector of the intersection of the medians of the triangle \(A B C\) is
87661 If the position vectors of the vertices, \(A, B, C\) of a triangle \(A B C\) are \(4 \hat{i}+7 \hat{j}+8 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}\) and \(2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\) respectively, then the position vector of the point where bisector of angel \(A\) meets \(B C\) is
87660
If \(\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}, \vec{b}=4 \hat{i}+5 \hat{j}+3 \hat{k}\)
and \(\overrightarrow{\mathbf{c}}=6 \hat{i}+\hat{j}+5 \hat{k}\) are the position vectors of the vertices of triangle \(A B C\) respectively, then the position vector of the intersection of the medians of the triangle \(A B C\) is
87661 If the position vectors of the vertices, \(A, B, C\) of a triangle \(A B C\) are \(4 \hat{i}+7 \hat{j}+8 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}\) and \(2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\) respectively, then the position vector of the point where bisector of angel \(A\) meets \(B C\) is
87660
If \(\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}, \vec{b}=4 \hat{i}+5 \hat{j}+3 \hat{k}\)
and \(\overrightarrow{\mathbf{c}}=6 \hat{i}+\hat{j}+5 \hat{k}\) are the position vectors of the vertices of triangle \(A B C\) respectively, then the position vector of the intersection of the medians of the triangle \(A B C\) is
87661 If the position vectors of the vertices, \(A, B, C\) of a triangle \(A B C\) are \(4 \hat{i}+7 \hat{j}+8 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}\) and \(2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\) respectively, then the position vector of the point where bisector of angel \(A\) meets \(B C\) is
87660
If \(\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}, \vec{b}=4 \hat{i}+5 \hat{j}+3 \hat{k}\)
and \(\overrightarrow{\mathbf{c}}=6 \hat{i}+\hat{j}+5 \hat{k}\) are the position vectors of the vertices of triangle \(A B C\) respectively, then the position vector of the intersection of the medians of the triangle \(A B C\) is
87661 If the position vectors of the vertices, \(A, B, C\) of a triangle \(A B C\) are \(4 \hat{i}+7 \hat{j}+8 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}\) and \(2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+7 \hat{\mathbf{k}}\) respectively, then the position vector of the point where bisector of angel \(A\) meets \(B C\) is