Miscellaneous Application of Differential Equation
Differential Equation

87631 The particular solution of the differential equation \(\frac{d y}{d x}=\sec y, y(0)=0\) is

1 \(x=\cos y\)
2 \(x=\sin y+q\)
3 \(y=\sin x\)
4 \(x=\sin y\)
Differential Equation

87632 Let \(\mathrm{f}(0)=1, \mathrm{f}(0.5)=\frac{5}{4}, \mathrm{f}(1)=2, \mathrm{f}(1.5)=\frac{13}{4}\) and \(f(2)=5\). Using Simpson's rule, \(\int_{0}^{2} f(x) d x\) is equal to

1 \(\frac{14}{3}\)
2 \(\frac{7}{6}\)
3 \(\frac{14}{9}\)
4 \(\frac{7}{9}\)
Differential Equation

87636 If \(u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)\), then
\((x+y+z)\left(u_{x}+u_{y} u_{z}\right)\) is equal to

1 0
2 \(x-y+z\)
3 2
4 3
Differential Equation

87637 The general solution of the differential equation \(100 \frac{d^{2} y}{d x^{2}}-20 \frac{d y}{d x}+y=0\) is

1 \(\mathrm{y}=\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) \mathrm{e}^{\mathrm{x}}\)
2 \(y=\left(c_{1}+c_{2} x\right) e^{-x}\)
3 \(y=\left(c_{1}+c_{2} x\right) e^{\frac{x}{10}}\)
4 \(y=c_{1} e^{x}+c_{2} e^{-x}\)
Differential Equation

87631 The particular solution of the differential equation \(\frac{d y}{d x}=\sec y, y(0)=0\) is

1 \(x=\cos y\)
2 \(x=\sin y+q\)
3 \(y=\sin x\)
4 \(x=\sin y\)
Differential Equation

87632 Let \(\mathrm{f}(0)=1, \mathrm{f}(0.5)=\frac{5}{4}, \mathrm{f}(1)=2, \mathrm{f}(1.5)=\frac{13}{4}\) and \(f(2)=5\). Using Simpson's rule, \(\int_{0}^{2} f(x) d x\) is equal to

1 \(\frac{14}{3}\)
2 \(\frac{7}{6}\)
3 \(\frac{14}{9}\)
4 \(\frac{7}{9}\)
Differential Equation

87636 If \(u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)\), then
\((x+y+z)\left(u_{x}+u_{y} u_{z}\right)\) is equal to

1 0
2 \(x-y+z\)
3 2
4 3
Differential Equation

87637 The general solution of the differential equation \(100 \frac{d^{2} y}{d x^{2}}-20 \frac{d y}{d x}+y=0\) is

1 \(\mathrm{y}=\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) \mathrm{e}^{\mathrm{x}}\)
2 \(y=\left(c_{1}+c_{2} x\right) e^{-x}\)
3 \(y=\left(c_{1}+c_{2} x\right) e^{\frac{x}{10}}\)
4 \(y=c_{1} e^{x}+c_{2} e^{-x}\)
Differential Equation

87631 The particular solution of the differential equation \(\frac{d y}{d x}=\sec y, y(0)=0\) is

1 \(x=\cos y\)
2 \(x=\sin y+q\)
3 \(y=\sin x\)
4 \(x=\sin y\)
Differential Equation

87632 Let \(\mathrm{f}(0)=1, \mathrm{f}(0.5)=\frac{5}{4}, \mathrm{f}(1)=2, \mathrm{f}(1.5)=\frac{13}{4}\) and \(f(2)=5\). Using Simpson's rule, \(\int_{0}^{2} f(x) d x\) is equal to

1 \(\frac{14}{3}\)
2 \(\frac{7}{6}\)
3 \(\frac{14}{9}\)
4 \(\frac{7}{9}\)
Differential Equation

87636 If \(u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)\), then
\((x+y+z)\left(u_{x}+u_{y} u_{z}\right)\) is equal to

1 0
2 \(x-y+z\)
3 2
4 3
Differential Equation

87637 The general solution of the differential equation \(100 \frac{d^{2} y}{d x^{2}}-20 \frac{d y}{d x}+y=0\) is

1 \(\mathrm{y}=\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) \mathrm{e}^{\mathrm{x}}\)
2 \(y=\left(c_{1}+c_{2} x\right) e^{-x}\)
3 \(y=\left(c_{1}+c_{2} x\right) e^{\frac{x}{10}}\)
4 \(y=c_{1} e^{x}+c_{2} e^{-x}\)
Differential Equation

87631 The particular solution of the differential equation \(\frac{d y}{d x}=\sec y, y(0)=0\) is

1 \(x=\cos y\)
2 \(x=\sin y+q\)
3 \(y=\sin x\)
4 \(x=\sin y\)
Differential Equation

87632 Let \(\mathrm{f}(0)=1, \mathrm{f}(0.5)=\frac{5}{4}, \mathrm{f}(1)=2, \mathrm{f}(1.5)=\frac{13}{4}\) and \(f(2)=5\). Using Simpson's rule, \(\int_{0}^{2} f(x) d x\) is equal to

1 \(\frac{14}{3}\)
2 \(\frac{7}{6}\)
3 \(\frac{14}{9}\)
4 \(\frac{7}{9}\)
Differential Equation

87636 If \(u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)\), then
\((x+y+z)\left(u_{x}+u_{y} u_{z}\right)\) is equal to

1 0
2 \(x-y+z\)
3 2
4 3
Differential Equation

87637 The general solution of the differential equation \(100 \frac{d^{2} y}{d x^{2}}-20 \frac{d y}{d x}+y=0\) is

1 \(\mathrm{y}=\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) \mathrm{e}^{\mathrm{x}}\)
2 \(y=\left(c_{1}+c_{2} x\right) e^{-x}\)
3 \(y=\left(c_{1}+c_{2} x\right) e^{\frac{x}{10}}\)
4 \(y=c_{1} e^{x}+c_{2} e^{-x}\)