Miscellaneous Application of Differential Equation
Differential Equation

87621 If \(y=y(x)\) is the solution curve of the differential equation
\(\frac{d y}{d x}+y \tan x=x \sec x, 0 \leq x \leq \frac{\pi}{3}, y(0)=1\) then
\(y\left(\frac{\pi}{6}\right)\) is equal to

1 \(\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2}{\mathrm{e} \sqrt{3}}\right)\)
2 \(\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2}{\mathrm{e} \sqrt{3}}\right)\)
3 \(\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}}{\mathrm{e}}\right)\)
4 \(\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}}{\mathrm{e}}\right)\)
Differential Equation

87622 The function \(y=c_{1} \cos x+c_{2} \sin x\) is a solution of D.E. where \(c_{1}\) and \(c_{2}\) are real numbers

1 \(\frac{d^{2} y}{d x^{2}}=y\)
2 \(\frac{d^{2} y}{d x^{2}}+y=0\)
3 \(\frac{d^{2} y}{d x^{2}}+x y=0\)
4 \(\frac{d^{2} y}{d x^{2}}-x y=0\)
Differential Equation

87623 Let \(y=y(x)\) be the solution of the differential equation \(\left(x^{2}-3 y^{2}\right) d x+3 x y d y=0, y(1)=1\). Then \(6 y^{2}(e)\) is \(=\)

1 \(\mathrm{e}^{2}\)
2 \(\frac{3}{2} \mathrm{e}^{2}\)
3 \(3 \mathrm{e}^{2}\)
4 \(2 \mathrm{e}^{2}\)
Differential Equation

87624 Let \(y=y(x)\) be the solution of the differential equation
\(\log _{e} x \frac{d y}{d x}+y=x^{2} \log _{e} x(x>1)\) If \(y(2)=2\), then \(y(e)\) is equal to

1 \(\frac{4+\mathrm{e}^{2}}{4}\)
2 \(\frac{1+\mathrm{e}^{2}}{2}\)
3 \(\frac{2+\mathrm{e}^{2}}{2}\)
4 \(\frac{1+\mathrm{e}^{2}}{4}\)
Differential Equation

87625 If \(x=x(y)\) is the solution of the differential equation \(y \frac{d x}{d y}=2 x+y^{3}(y+1) e^{y}, x(1)=0\);
then \(x(e)\) is equal to :

1 \(e_{2}^{3}\left(e^{e}-1\right)\)
2 \(\mathrm{e}_{\mathrm{e}}^{\mathrm{e}}\left(\mathrm{e}_{2}^{3}-1\right)\)
3 \(\mathrm{e}^{2}\left(\mathrm{e}^{\mathrm{e}}+1\right)\)
4 \(e^{e}\left(e^{2}-1\right)\)
Differential Equation

87621 If \(y=y(x)\) is the solution curve of the differential equation
\(\frac{d y}{d x}+y \tan x=x \sec x, 0 \leq x \leq \frac{\pi}{3}, y(0)=1\) then
\(y\left(\frac{\pi}{6}\right)\) is equal to

1 \(\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2}{\mathrm{e} \sqrt{3}}\right)\)
2 \(\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2}{\mathrm{e} \sqrt{3}}\right)\)
3 \(\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}}{\mathrm{e}}\right)\)
4 \(\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}}{\mathrm{e}}\right)\)
Differential Equation

87622 The function \(y=c_{1} \cos x+c_{2} \sin x\) is a solution of D.E. where \(c_{1}\) and \(c_{2}\) are real numbers

1 \(\frac{d^{2} y}{d x^{2}}=y\)
2 \(\frac{d^{2} y}{d x^{2}}+y=0\)
3 \(\frac{d^{2} y}{d x^{2}}+x y=0\)
4 \(\frac{d^{2} y}{d x^{2}}-x y=0\)
Differential Equation

87623 Let \(y=y(x)\) be the solution of the differential equation \(\left(x^{2}-3 y^{2}\right) d x+3 x y d y=0, y(1)=1\). Then \(6 y^{2}(e)\) is \(=\)

1 \(\mathrm{e}^{2}\)
2 \(\frac{3}{2} \mathrm{e}^{2}\)
3 \(3 \mathrm{e}^{2}\)
4 \(2 \mathrm{e}^{2}\)
Differential Equation

87624 Let \(y=y(x)\) be the solution of the differential equation
\(\log _{e} x \frac{d y}{d x}+y=x^{2} \log _{e} x(x>1)\) If \(y(2)=2\), then \(y(e)\) is equal to

1 \(\frac{4+\mathrm{e}^{2}}{4}\)
2 \(\frac{1+\mathrm{e}^{2}}{2}\)
3 \(\frac{2+\mathrm{e}^{2}}{2}\)
4 \(\frac{1+\mathrm{e}^{2}}{4}\)
Differential Equation

87625 If \(x=x(y)\) is the solution of the differential equation \(y \frac{d x}{d y}=2 x+y^{3}(y+1) e^{y}, x(1)=0\);
then \(x(e)\) is equal to :

1 \(e_{2}^{3}\left(e^{e}-1\right)\)
2 \(\mathrm{e}_{\mathrm{e}}^{\mathrm{e}}\left(\mathrm{e}_{2}^{3}-1\right)\)
3 \(\mathrm{e}^{2}\left(\mathrm{e}^{\mathrm{e}}+1\right)\)
4 \(e^{e}\left(e^{2}-1\right)\)
Differential Equation

87621 If \(y=y(x)\) is the solution curve of the differential equation
\(\frac{d y}{d x}+y \tan x=x \sec x, 0 \leq x \leq \frac{\pi}{3}, y(0)=1\) then
\(y\left(\frac{\pi}{6}\right)\) is equal to

1 \(\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2}{\mathrm{e} \sqrt{3}}\right)\)
2 \(\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2}{\mathrm{e} \sqrt{3}}\right)\)
3 \(\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}}{\mathrm{e}}\right)\)
4 \(\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}}{\mathrm{e}}\right)\)
Differential Equation

87622 The function \(y=c_{1} \cos x+c_{2} \sin x\) is a solution of D.E. where \(c_{1}\) and \(c_{2}\) are real numbers

1 \(\frac{d^{2} y}{d x^{2}}=y\)
2 \(\frac{d^{2} y}{d x^{2}}+y=0\)
3 \(\frac{d^{2} y}{d x^{2}}+x y=0\)
4 \(\frac{d^{2} y}{d x^{2}}-x y=0\)
Differential Equation

87623 Let \(y=y(x)\) be the solution of the differential equation \(\left(x^{2}-3 y^{2}\right) d x+3 x y d y=0, y(1)=1\). Then \(6 y^{2}(e)\) is \(=\)

1 \(\mathrm{e}^{2}\)
2 \(\frac{3}{2} \mathrm{e}^{2}\)
3 \(3 \mathrm{e}^{2}\)
4 \(2 \mathrm{e}^{2}\)
Differential Equation

87624 Let \(y=y(x)\) be the solution of the differential equation
\(\log _{e} x \frac{d y}{d x}+y=x^{2} \log _{e} x(x>1)\) If \(y(2)=2\), then \(y(e)\) is equal to

1 \(\frac{4+\mathrm{e}^{2}}{4}\)
2 \(\frac{1+\mathrm{e}^{2}}{2}\)
3 \(\frac{2+\mathrm{e}^{2}}{2}\)
4 \(\frac{1+\mathrm{e}^{2}}{4}\)
Differential Equation

87625 If \(x=x(y)\) is the solution of the differential equation \(y \frac{d x}{d y}=2 x+y^{3}(y+1) e^{y}, x(1)=0\);
then \(x(e)\) is equal to :

1 \(e_{2}^{3}\left(e^{e}-1\right)\)
2 \(\mathrm{e}_{\mathrm{e}}^{\mathrm{e}}\left(\mathrm{e}_{2}^{3}-1\right)\)
3 \(\mathrm{e}^{2}\left(\mathrm{e}^{\mathrm{e}}+1\right)\)
4 \(e^{e}\left(e^{2}-1\right)\)
Differential Equation

87621 If \(y=y(x)\) is the solution curve of the differential equation
\(\frac{d y}{d x}+y \tan x=x \sec x, 0 \leq x \leq \frac{\pi}{3}, y(0)=1\) then
\(y\left(\frac{\pi}{6}\right)\) is equal to

1 \(\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2}{\mathrm{e} \sqrt{3}}\right)\)
2 \(\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2}{\mathrm{e} \sqrt{3}}\right)\)
3 \(\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}}{\mathrm{e}}\right)\)
4 \(\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}}{\mathrm{e}}\right)\)
Differential Equation

87622 The function \(y=c_{1} \cos x+c_{2} \sin x\) is a solution of D.E. where \(c_{1}\) and \(c_{2}\) are real numbers

1 \(\frac{d^{2} y}{d x^{2}}=y\)
2 \(\frac{d^{2} y}{d x^{2}}+y=0\)
3 \(\frac{d^{2} y}{d x^{2}}+x y=0\)
4 \(\frac{d^{2} y}{d x^{2}}-x y=0\)
Differential Equation

87623 Let \(y=y(x)\) be the solution of the differential equation \(\left(x^{2}-3 y^{2}\right) d x+3 x y d y=0, y(1)=1\). Then \(6 y^{2}(e)\) is \(=\)

1 \(\mathrm{e}^{2}\)
2 \(\frac{3}{2} \mathrm{e}^{2}\)
3 \(3 \mathrm{e}^{2}\)
4 \(2 \mathrm{e}^{2}\)
Differential Equation

87624 Let \(y=y(x)\) be the solution of the differential equation
\(\log _{e} x \frac{d y}{d x}+y=x^{2} \log _{e} x(x>1)\) If \(y(2)=2\), then \(y(e)\) is equal to

1 \(\frac{4+\mathrm{e}^{2}}{4}\)
2 \(\frac{1+\mathrm{e}^{2}}{2}\)
3 \(\frac{2+\mathrm{e}^{2}}{2}\)
4 \(\frac{1+\mathrm{e}^{2}}{4}\)
Differential Equation

87625 If \(x=x(y)\) is the solution of the differential equation \(y \frac{d x}{d y}=2 x+y^{3}(y+1) e^{y}, x(1)=0\);
then \(x(e)\) is equal to :

1 \(e_{2}^{3}\left(e^{e}-1\right)\)
2 \(\mathrm{e}_{\mathrm{e}}^{\mathrm{e}}\left(\mathrm{e}_{2}^{3}-1\right)\)
3 \(\mathrm{e}^{2}\left(\mathrm{e}^{\mathrm{e}}+1\right)\)
4 \(e^{e}\left(e^{2}-1\right)\)
Differential Equation

87621 If \(y=y(x)\) is the solution curve of the differential equation
\(\frac{d y}{d x}+y \tan x=x \sec x, 0 \leq x \leq \frac{\pi}{3}, y(0)=1\) then
\(y\left(\frac{\pi}{6}\right)\) is equal to

1 \(\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2}{\mathrm{e} \sqrt{3}}\right)\)
2 \(\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2}{\mathrm{e} \sqrt{3}}\right)\)
3 \(\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}}{\mathrm{e}}\right)\)
4 \(\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{\mathrm{e}}\left(\frac{2 \sqrt{3}}{\mathrm{e}}\right)\)
Differential Equation

87622 The function \(y=c_{1} \cos x+c_{2} \sin x\) is a solution of D.E. where \(c_{1}\) and \(c_{2}\) are real numbers

1 \(\frac{d^{2} y}{d x^{2}}=y\)
2 \(\frac{d^{2} y}{d x^{2}}+y=0\)
3 \(\frac{d^{2} y}{d x^{2}}+x y=0\)
4 \(\frac{d^{2} y}{d x^{2}}-x y=0\)
Differential Equation

87623 Let \(y=y(x)\) be the solution of the differential equation \(\left(x^{2}-3 y^{2}\right) d x+3 x y d y=0, y(1)=1\). Then \(6 y^{2}(e)\) is \(=\)

1 \(\mathrm{e}^{2}\)
2 \(\frac{3}{2} \mathrm{e}^{2}\)
3 \(3 \mathrm{e}^{2}\)
4 \(2 \mathrm{e}^{2}\)
Differential Equation

87624 Let \(y=y(x)\) be the solution of the differential equation
\(\log _{e} x \frac{d y}{d x}+y=x^{2} \log _{e} x(x>1)\) If \(y(2)=2\), then \(y(e)\) is equal to

1 \(\frac{4+\mathrm{e}^{2}}{4}\)
2 \(\frac{1+\mathrm{e}^{2}}{2}\)
3 \(\frac{2+\mathrm{e}^{2}}{2}\)
4 \(\frac{1+\mathrm{e}^{2}}{4}\)
Differential Equation

87625 If \(x=x(y)\) is the solution of the differential equation \(y \frac{d x}{d y}=2 x+y^{3}(y+1) e^{y}, x(1)=0\);
then \(x(e)\) is equal to :

1 \(e_{2}^{3}\left(e^{e}-1\right)\)
2 \(\mathrm{e}_{\mathrm{e}}^{\mathrm{e}}\left(\mathrm{e}_{2}^{3}-1\right)\)
3 \(\mathrm{e}^{2}\left(\mathrm{e}^{\mathrm{e}}+1\right)\)
4 \(e^{e}\left(e^{2}-1\right)\)