Explanation:
(C) : Given, \(\mathrm{n}=4\),
We have,
\(\Delta x=\frac{9-1}{4}=\frac{8}{4}=2\)
We compute the values of \(\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots ., \mathrm{y}_{4}\)
| $\mathrm{x}$ | 1 | 3 | 5 | 7 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{y}=\mathrm{x}^2$ | 1 | 9 | 25 | 49 | 81 |
Therefore,
\(\int_{1}^{9} x^{2} d x \approx \frac{2}{2}\left[1+3^{2}+5^{2}+7^{2}+9^{2}\right]\)
\(\approx 2\left[\frac{1}{2}\left\{\left(1+9^{2}\right)+3^{2}+5^{2}+7^{2}\right\}\right]\)
But we have given that,
\(\int_{1}^{9} x^{2} d x \approx 2\left[\frac{1}{2}\left(1+9^{2}\right)+\alpha^{2}+\beta^{2}+7^{2}\right]\)
By comparison, we get that
\(\alpha=3\) and \(\beta=5\)