87571 The solution of the differential equation dydx=1x+y2 is
(D) : Given differential equation,dydx=1x+y2⇒dxdy=x+y21⇒dxdy−x=y2Assume, P=−1,Q=y2I.F, =e∫−1dy=e−yxe−y=∫e−yy2dy=−e−yy2+∫2e−yydy=−e−yy2+2[−e−yy+∫e−ydy]+c=−e−yy2+2[−e−yy−e−y]+c⇒xe−y=e−y(−y2−2y−2)+cx=−y2−2y−2+cey
87572 The solution of dydx+ytanx=secx is :
(A) : Given,dydx+ytanx=secxIt is a first-degree linear D.E. of the formdydx+py=θHere,P=tanx,θ=secxI.F. =e∫pdx=e∫tanx dx=elogsecx=secxThe solution is given by-y⋅I⋅F⋅=∫Q⋅I⋅F⋅dx+cy⋅secx=∫sec2xdx+cy⋅secx=tanx+c
87573 Solution of the differential equationx=1+xydydx+(xy)22!(dydx)2+(xy)33!(dydx)3+… is
(C) : We have,x=exydydx⇒logx=xydydx⇒ydy=logxxdx⇒ydy=logxd(logx)On integrating both sides, we get-y22=(logex)22+C⇒y2=(logex)2+2C⇒y=±(logex)2+2C
87537 Let y(x) be the solution of the differential equation (xlogx)dydx+y=2xlogx,(x≥1). Theny(e) is equal to
(C) : Given,Dividing by xlogx(xlogx)dydx+y=2xlogxdydx+yxlogx=2Multiplying by I.Fd(IF×y)=2logxdxIF =e∫1xlogxdx=elog(logx)=logxd×(IF×y)=2logxdxBy integratingylogx=∫2logxdxBy using product rule on R.W.Sylogx=2[logx]1−(∫ddx(logx))dxylogx=2[x(logx−1)]+CPut,x=10=2[1(0−1)]+CC=2ylogx=2[x(logx−1)]+2 at x=ey=2
87553 If dydx=y+3>0 and y(0)=2, then y(log2) is equal to
(D) : dydx=y+3dyy+3=dxln(y+3)=x+CGiven, at x=0,y=2ln5=Cln(y+3)=x+lnln(y+35)=xy+3=5exy=5ex−3y(ln2)=5eln2−3=7