Solution of Linear Differential Equation
Differential Equation

87571 The solution of the differential equation dydx=1x+y2 is

1 y=x22x2+cx
2 y=x2+2x+2cex
3 x=y22y+2cey
4 x=y22y2+cey
5 x=y2+2y+2cey
Differential Equation

87572 The solution of dydx+ytanx=secx is :

1 ysecx=tanx+c
2 ytanx=secx+c
3 tanx=ytanx+c
4 xsecx=tany+c
5 xtanx=ytanx+c
Differential Equation

87573 Solution of the differential equation
x=1+xydydx+(xy)22!(dydx)2+(xy)33!(dydx)3+ is

1 y=loge(x)+C
2 y=(logex)2+C
3 y=±(logex)2+2C
4 xy=xy+C
Differential Equation

87537 Let y(x) be the solution of the differential equation (xlogx)dydx+y=2xlogx,(x1). Then
y(e) is equal to

1 0
2 e
3 2
4 2e
Differential Equation

87571 The solution of the differential equation dydx=1x+y2 is

1 y=x22x2+cx
2 y=x2+2x+2cex
3 x=y22y+2cey
4 x=y22y2+cey
5 x=y2+2y+2cey
Differential Equation

87572 The solution of dydx+ytanx=secx is :

1 ysecx=tanx+c
2 ytanx=secx+c
3 tanx=ytanx+c
4 xsecx=tany+c
5 xtanx=ytanx+c
Differential Equation

87573 Solution of the differential equation
x=1+xydydx+(xy)22!(dydx)2+(xy)33!(dydx)3+ is

1 y=loge(x)+C
2 y=(logex)2+C
3 y=±(logex)2+2C
4 xy=xy+C
Differential Equation

87537 Let y(x) be the solution of the differential equation (xlogx)dydx+y=2xlogx,(x1). Then
y(e) is equal to

1 0
2 e
3 2
4 2e
Differential Equation

87553 If dydx=y+3>0 and y(0)=2, then y(log2) is equal to

1 5
2 13
3 -2
4 7
Differential Equation

87571 The solution of the differential equation dydx=1x+y2 is

1 y=x22x2+cx
2 y=x2+2x+2cex
3 x=y22y+2cey
4 x=y22y2+cey
5 x=y2+2y+2cey
Differential Equation

87572 The solution of dydx+ytanx=secx is :

1 ysecx=tanx+c
2 ytanx=secx+c
3 tanx=ytanx+c
4 xsecx=tany+c
5 xtanx=ytanx+c
Differential Equation

87573 Solution of the differential equation
x=1+xydydx+(xy)22!(dydx)2+(xy)33!(dydx)3+ is

1 y=loge(x)+C
2 y=(logex)2+C
3 y=±(logex)2+2C
4 xy=xy+C
Differential Equation

87537 Let y(x) be the solution of the differential equation (xlogx)dydx+y=2xlogx,(x1). Then
y(e) is equal to

1 0
2 e
3 2
4 2e
Differential Equation

87553 If dydx=y+3>0 and y(0)=2, then y(log2) is equal to

1 5
2 13
3 -2
4 7
Differential Equation

87571 The solution of the differential equation dydx=1x+y2 is

1 y=x22x2+cx
2 y=x2+2x+2cex
3 x=y22y+2cey
4 x=y22y2+cey
5 x=y2+2y+2cey
Differential Equation

87572 The solution of dydx+ytanx=secx is :

1 ysecx=tanx+c
2 ytanx=secx+c
3 tanx=ytanx+c
4 xsecx=tany+c
5 xtanx=ytanx+c
Differential Equation

87573 Solution of the differential equation
x=1+xydydx+(xy)22!(dydx)2+(xy)33!(dydx)3+ is

1 y=loge(x)+C
2 y=(logex)2+C
3 y=±(logex)2+2C
4 xy=xy+C
Differential Equation

87537 Let y(x) be the solution of the differential equation (xlogx)dydx+y=2xlogx,(x1). Then
y(e) is equal to

1 0
2 e
3 2
4 2e
Differential Equation

87553 If dydx=y+3>0 and y(0)=2, then y(log2) is equal to

1 5
2 13
3 -2
4 7
Differential Equation

87571 The solution of the differential equation dydx=1x+y2 is

1 y=x22x2+cx
2 y=x2+2x+2cex
3 x=y22y+2cey
4 x=y22y2+cey
5 x=y2+2y+2cey
Differential Equation

87572 The solution of dydx+ytanx=secx is :

1 ysecx=tanx+c
2 ytanx=secx+c
3 tanx=ytanx+c
4 xsecx=tany+c
5 xtanx=ytanx+c
Differential Equation

87573 Solution of the differential equation
x=1+xydydx+(xy)22!(dydx)2+(xy)33!(dydx)3+ is

1 y=loge(x)+C
2 y=(logex)2+C
3 y=±(logex)2+2C
4 xy=xy+C
Differential Equation

87537 Let y(x) be the solution of the differential equation (xlogx)dydx+y=2xlogx,(x1). Then
y(e) is equal to

1 0
2 e
3 2
4 2e
Differential Equation

87553 If dydx=y+3>0 and y(0)=2, then y(log2) is equal to

1 5
2 13
3 -2
4 7