Solution of Linear Differential Equation
Differential Equation

87571 The solution of the differential equation \(\frac{d y}{d x}=\frac{1}{x+y^{2}}\) is

1 \(y=-x^{2}-2 x-2+c^{x}\)
2 \(y=x^{2}+2 x+2-c e^{x}\)
3 \(x=-y^{2}-2 y+2-c e^{y}\)
4 \(x=-y^{2}-2 y-2+c e^{y}\)
5 \(x=y^{2}+2 y+2-c e^{y}\)
Differential Equation

87572 The solution of \(\frac{d y}{d x}+y \tan x=\sec x\) is :

1 \(y \sec x=\tan x+c\)
2 \(y \tan x=\sec x+c\)
3 \(\tan x=y \tan x+c\)
4 \(x \sec x=\tan y+c\)
5 \(x \tan x=y \tan x+c\)
Differential Equation

87573 Solution of the differential equation
\(x=1+x y \frac{d y}{d x}+\frac{(x y)^{2}}{2 !}\left(\frac{d y}{d x}\right)^{2}+\frac{(x y)^{3}}{3 !}\left(\frac{d y}{d x}\right)^{3}+\ldots\) is

1 \(y=\log _{e}(x)+C\)
2 \(y=\left(\log _{e} x\right)^{2}+C\)
3 \(y= \pm \sqrt{\left(\log _{e} x\right)^{2}+2 C}\)
4 \(x y=x^{y}+C\)
Differential Equation

87537 Let \(y(x)\) be the solution of the differential equation \((x \log x) \frac{d y}{d x}+y=2 x \log x,(x \geq 1)\). Then
\(y(e)\) is equal to

1 0
2 e
3 2
4 \(2 \mathrm{e}\)
Differential Equation

87553 If \(\frac{d y}{d x}=y+3>0\) and \(y(0)=2\), then \(y(\log 2)\) is equal to

1 5
2 13
3 -2
4 7
Differential Equation

87571 The solution of the differential equation \(\frac{d y}{d x}=\frac{1}{x+y^{2}}\) is

1 \(y=-x^{2}-2 x-2+c^{x}\)
2 \(y=x^{2}+2 x+2-c e^{x}\)
3 \(x=-y^{2}-2 y+2-c e^{y}\)
4 \(x=-y^{2}-2 y-2+c e^{y}\)
5 \(x=y^{2}+2 y+2-c e^{y}\)
Differential Equation

87572 The solution of \(\frac{d y}{d x}+y \tan x=\sec x\) is :

1 \(y \sec x=\tan x+c\)
2 \(y \tan x=\sec x+c\)
3 \(\tan x=y \tan x+c\)
4 \(x \sec x=\tan y+c\)
5 \(x \tan x=y \tan x+c\)
Differential Equation

87573 Solution of the differential equation
\(x=1+x y \frac{d y}{d x}+\frac{(x y)^{2}}{2 !}\left(\frac{d y}{d x}\right)^{2}+\frac{(x y)^{3}}{3 !}\left(\frac{d y}{d x}\right)^{3}+\ldots\) is

1 \(y=\log _{e}(x)+C\)
2 \(y=\left(\log _{e} x\right)^{2}+C\)
3 \(y= \pm \sqrt{\left(\log _{e} x\right)^{2}+2 C}\)
4 \(x y=x^{y}+C\)
Differential Equation

87537 Let \(y(x)\) be the solution of the differential equation \((x \log x) \frac{d y}{d x}+y=2 x \log x,(x \geq 1)\). Then
\(y(e)\) is equal to

1 0
2 e
3 2
4 \(2 \mathrm{e}\)
Differential Equation

87553 If \(\frac{d y}{d x}=y+3>0\) and \(y(0)=2\), then \(y(\log 2)\) is equal to

1 5
2 13
3 -2
4 7
Differential Equation

87571 The solution of the differential equation \(\frac{d y}{d x}=\frac{1}{x+y^{2}}\) is

1 \(y=-x^{2}-2 x-2+c^{x}\)
2 \(y=x^{2}+2 x+2-c e^{x}\)
3 \(x=-y^{2}-2 y+2-c e^{y}\)
4 \(x=-y^{2}-2 y-2+c e^{y}\)
5 \(x=y^{2}+2 y+2-c e^{y}\)
Differential Equation

87572 The solution of \(\frac{d y}{d x}+y \tan x=\sec x\) is :

1 \(y \sec x=\tan x+c\)
2 \(y \tan x=\sec x+c\)
3 \(\tan x=y \tan x+c\)
4 \(x \sec x=\tan y+c\)
5 \(x \tan x=y \tan x+c\)
Differential Equation

87573 Solution of the differential equation
\(x=1+x y \frac{d y}{d x}+\frac{(x y)^{2}}{2 !}\left(\frac{d y}{d x}\right)^{2}+\frac{(x y)^{3}}{3 !}\left(\frac{d y}{d x}\right)^{3}+\ldots\) is

1 \(y=\log _{e}(x)+C\)
2 \(y=\left(\log _{e} x\right)^{2}+C\)
3 \(y= \pm \sqrt{\left(\log _{e} x\right)^{2}+2 C}\)
4 \(x y=x^{y}+C\)
Differential Equation

87537 Let \(y(x)\) be the solution of the differential equation \((x \log x) \frac{d y}{d x}+y=2 x \log x,(x \geq 1)\). Then
\(y(e)\) is equal to

1 0
2 e
3 2
4 \(2 \mathrm{e}\)
Differential Equation

87553 If \(\frac{d y}{d x}=y+3>0\) and \(y(0)=2\), then \(y(\log 2)\) is equal to

1 5
2 13
3 -2
4 7
Differential Equation

87571 The solution of the differential equation \(\frac{d y}{d x}=\frac{1}{x+y^{2}}\) is

1 \(y=-x^{2}-2 x-2+c^{x}\)
2 \(y=x^{2}+2 x+2-c e^{x}\)
3 \(x=-y^{2}-2 y+2-c e^{y}\)
4 \(x=-y^{2}-2 y-2+c e^{y}\)
5 \(x=y^{2}+2 y+2-c e^{y}\)
Differential Equation

87572 The solution of \(\frac{d y}{d x}+y \tan x=\sec x\) is :

1 \(y \sec x=\tan x+c\)
2 \(y \tan x=\sec x+c\)
3 \(\tan x=y \tan x+c\)
4 \(x \sec x=\tan y+c\)
5 \(x \tan x=y \tan x+c\)
Differential Equation

87573 Solution of the differential equation
\(x=1+x y \frac{d y}{d x}+\frac{(x y)^{2}}{2 !}\left(\frac{d y}{d x}\right)^{2}+\frac{(x y)^{3}}{3 !}\left(\frac{d y}{d x}\right)^{3}+\ldots\) is

1 \(y=\log _{e}(x)+C\)
2 \(y=\left(\log _{e} x\right)^{2}+C\)
3 \(y= \pm \sqrt{\left(\log _{e} x\right)^{2}+2 C}\)
4 \(x y=x^{y}+C\)
Differential Equation

87537 Let \(y(x)\) be the solution of the differential equation \((x \log x) \frac{d y}{d x}+y=2 x \log x,(x \geq 1)\). Then
\(y(e)\) is equal to

1 0
2 e
3 2
4 \(2 \mathrm{e}\)
Differential Equation

87553 If \(\frac{d y}{d x}=y+3>0\) and \(y(0)=2\), then \(y(\log 2)\) is equal to

1 5
2 13
3 -2
4 7
Differential Equation

87571 The solution of the differential equation \(\frac{d y}{d x}=\frac{1}{x+y^{2}}\) is

1 \(y=-x^{2}-2 x-2+c^{x}\)
2 \(y=x^{2}+2 x+2-c e^{x}\)
3 \(x=-y^{2}-2 y+2-c e^{y}\)
4 \(x=-y^{2}-2 y-2+c e^{y}\)
5 \(x=y^{2}+2 y+2-c e^{y}\)
Differential Equation

87572 The solution of \(\frac{d y}{d x}+y \tan x=\sec x\) is :

1 \(y \sec x=\tan x+c\)
2 \(y \tan x=\sec x+c\)
3 \(\tan x=y \tan x+c\)
4 \(x \sec x=\tan y+c\)
5 \(x \tan x=y \tan x+c\)
Differential Equation

87573 Solution of the differential equation
\(x=1+x y \frac{d y}{d x}+\frac{(x y)^{2}}{2 !}\left(\frac{d y}{d x}\right)^{2}+\frac{(x y)^{3}}{3 !}\left(\frac{d y}{d x}\right)^{3}+\ldots\) is

1 \(y=\log _{e}(x)+C\)
2 \(y=\left(\log _{e} x\right)^{2}+C\)
3 \(y= \pm \sqrt{\left(\log _{e} x\right)^{2}+2 C}\)
4 \(x y=x^{y}+C\)
Differential Equation

87537 Let \(y(x)\) be the solution of the differential equation \((x \log x) \frac{d y}{d x}+y=2 x \log x,(x \geq 1)\). Then
\(y(e)\) is equal to

1 0
2 e
3 2
4 \(2 \mathrm{e}\)
Differential Equation

87553 If \(\frac{d y}{d x}=y+3>0\) and \(y(0)=2\), then \(y(\log 2)\) is equal to

1 5
2 13
3 -2
4 7