Homogeneous Differential Equation
Differential Equation

87514 The solution of \( \frac{d y}{d x}=1+y+y^{2}+x+x y+x y^{2} \) is

1 \( \tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=x+x^{2}+C \)
2 \( 4 \tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=\sqrt{3}\left(2 x+x^{2}\right)+C \)
3 \( \sqrt{3} \tan ^{-1}\left(\frac{3 y+1}{3}\right)=4\left(1+x+x^{2}\right)+C \)
4 \( \tan ^{-1}\left(\frac{2 \mathrm{y}+1}{3}\right)=4\left(2 \mathrm{x}+\mathrm{x}^{2}\right)+\mathrm{C} \)
Differential Equation

87515 The solution of \(\frac{d y}{d x}=1+y+y^{2}+x+x y+x y^{2}\) is

1 \(\tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=x+x^{2}+C\)
2 \(4 \tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=\sqrt{3}\left(2 x+x^{2}\right)+C\)
3 \(\sqrt{3} \tan ^{-1}\left(\frac{3 y+1}{3}\right)=4\left(1+x+x^{2}\right)+C\)
4 \(\tan ^{-1}\left(\frac{2 y+1}{3}\right)=4\left(2 x+x^{2}\right)+C\)
Differential Equation

87517 Solution of the differential equation
\(x\left(\frac{d y}{d x}\right)=y+\sqrt{\left(x^{2}+y^{2}\right) \text { is }}\)

1 \(y-\sqrt{\left(x^{2}+y^{2}\right)}=c x^{2}\)
2 \(y+\sqrt{\left(x^{2}+y^{2}\right)}=c x^{2}\)
3 \(x+\sqrt{\left(x^{2}+y^{2}\right)}=c y^{2}\)
4 \(x-\sqrt{\left(x^{2}+y^{2}\right)}=c y^{2}\)
Differential Equation

87518 The solution of the differential equation \(\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y\) is

1 \(x e^{\tan ^{-1} y}=\left(1-\tan ^{-1} y\right) e^{\tan ^{-1} y}+C\)
2 \(x e^{\tan ^{-1} y}=\left(\tan ^{-1} y-1\right) e^{\tan ^{-1} y}+C\)
3 \(x=\tan ^{-1} y-1+\mathrm{Ce}^{-\tan ^{-1} y}\)
4 None of above
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Differential Equation

87514 The solution of \( \frac{d y}{d x}=1+y+y^{2}+x+x y+x y^{2} \) is

1 \( \tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=x+x^{2}+C \)
2 \( 4 \tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=\sqrt{3}\left(2 x+x^{2}\right)+C \)
3 \( \sqrt{3} \tan ^{-1}\left(\frac{3 y+1}{3}\right)=4\left(1+x+x^{2}\right)+C \)
4 \( \tan ^{-1}\left(\frac{2 \mathrm{y}+1}{3}\right)=4\left(2 \mathrm{x}+\mathrm{x}^{2}\right)+\mathrm{C} \)
Differential Equation

87515 The solution of \(\frac{d y}{d x}=1+y+y^{2}+x+x y+x y^{2}\) is

1 \(\tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=x+x^{2}+C\)
2 \(4 \tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=\sqrt{3}\left(2 x+x^{2}\right)+C\)
3 \(\sqrt{3} \tan ^{-1}\left(\frac{3 y+1}{3}\right)=4\left(1+x+x^{2}\right)+C\)
4 \(\tan ^{-1}\left(\frac{2 y+1}{3}\right)=4\left(2 x+x^{2}\right)+C\)
Differential Equation

87517 Solution of the differential equation
\(x\left(\frac{d y}{d x}\right)=y+\sqrt{\left(x^{2}+y^{2}\right) \text { is }}\)

1 \(y-\sqrt{\left(x^{2}+y^{2}\right)}=c x^{2}\)
2 \(y+\sqrt{\left(x^{2}+y^{2}\right)}=c x^{2}\)
3 \(x+\sqrt{\left(x^{2}+y^{2}\right)}=c y^{2}\)
4 \(x-\sqrt{\left(x^{2}+y^{2}\right)}=c y^{2}\)
Differential Equation

87518 The solution of the differential equation \(\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y\) is

1 \(x e^{\tan ^{-1} y}=\left(1-\tan ^{-1} y\right) e^{\tan ^{-1} y}+C\)
2 \(x e^{\tan ^{-1} y}=\left(\tan ^{-1} y-1\right) e^{\tan ^{-1} y}+C\)
3 \(x=\tan ^{-1} y-1+\mathrm{Ce}^{-\tan ^{-1} y}\)
4 None of above
Differential Equation

87514 The solution of \( \frac{d y}{d x}=1+y+y^{2}+x+x y+x y^{2} \) is

1 \( \tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=x+x^{2}+C \)
2 \( 4 \tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=\sqrt{3}\left(2 x+x^{2}\right)+C \)
3 \( \sqrt{3} \tan ^{-1}\left(\frac{3 y+1}{3}\right)=4\left(1+x+x^{2}\right)+C \)
4 \( \tan ^{-1}\left(\frac{2 \mathrm{y}+1}{3}\right)=4\left(2 \mathrm{x}+\mathrm{x}^{2}\right)+\mathrm{C} \)
Differential Equation

87515 The solution of \(\frac{d y}{d x}=1+y+y^{2}+x+x y+x y^{2}\) is

1 \(\tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=x+x^{2}+C\)
2 \(4 \tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=\sqrt{3}\left(2 x+x^{2}\right)+C\)
3 \(\sqrt{3} \tan ^{-1}\left(\frac{3 y+1}{3}\right)=4\left(1+x+x^{2}\right)+C\)
4 \(\tan ^{-1}\left(\frac{2 y+1}{3}\right)=4\left(2 x+x^{2}\right)+C\)
Differential Equation

87517 Solution of the differential equation
\(x\left(\frac{d y}{d x}\right)=y+\sqrt{\left(x^{2}+y^{2}\right) \text { is }}\)

1 \(y-\sqrt{\left(x^{2}+y^{2}\right)}=c x^{2}\)
2 \(y+\sqrt{\left(x^{2}+y^{2}\right)}=c x^{2}\)
3 \(x+\sqrt{\left(x^{2}+y^{2}\right)}=c y^{2}\)
4 \(x-\sqrt{\left(x^{2}+y^{2}\right)}=c y^{2}\)
Differential Equation

87518 The solution of the differential equation \(\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y\) is

1 \(x e^{\tan ^{-1} y}=\left(1-\tan ^{-1} y\right) e^{\tan ^{-1} y}+C\)
2 \(x e^{\tan ^{-1} y}=\left(\tan ^{-1} y-1\right) e^{\tan ^{-1} y}+C\)
3 \(x=\tan ^{-1} y-1+\mathrm{Ce}^{-\tan ^{-1} y}\)
4 None of above
Differential Equation

87514 The solution of \( \frac{d y}{d x}=1+y+y^{2}+x+x y+x y^{2} \) is

1 \( \tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=x+x^{2}+C \)
2 \( 4 \tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=\sqrt{3}\left(2 x+x^{2}\right)+C \)
3 \( \sqrt{3} \tan ^{-1}\left(\frac{3 y+1}{3}\right)=4\left(1+x+x^{2}\right)+C \)
4 \( \tan ^{-1}\left(\frac{2 \mathrm{y}+1}{3}\right)=4\left(2 \mathrm{x}+\mathrm{x}^{2}\right)+\mathrm{C} \)
Differential Equation

87515 The solution of \(\frac{d y}{d x}=1+y+y^{2}+x+x y+x y^{2}\) is

1 \(\tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=x+x^{2}+C\)
2 \(4 \tan ^{-1}\left(\frac{2 y+1}{\sqrt{3}}\right)=\sqrt{3}\left(2 x+x^{2}\right)+C\)
3 \(\sqrt{3} \tan ^{-1}\left(\frac{3 y+1}{3}\right)=4\left(1+x+x^{2}\right)+C\)
4 \(\tan ^{-1}\left(\frac{2 y+1}{3}\right)=4\left(2 x+x^{2}\right)+C\)
Differential Equation

87517 Solution of the differential equation
\(x\left(\frac{d y}{d x}\right)=y+\sqrt{\left(x^{2}+y^{2}\right) \text { is }}\)

1 \(y-\sqrt{\left(x^{2}+y^{2}\right)}=c x^{2}\)
2 \(y+\sqrt{\left(x^{2}+y^{2}\right)}=c x^{2}\)
3 \(x+\sqrt{\left(x^{2}+y^{2}\right)}=c y^{2}\)
4 \(x-\sqrt{\left(x^{2}+y^{2}\right)}=c y^{2}\)
Differential Equation

87518 The solution of the differential equation \(\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y\) is

1 \(x e^{\tan ^{-1} y}=\left(1-\tan ^{-1} y\right) e^{\tan ^{-1} y}+C\)
2 \(x e^{\tan ^{-1} y}=\left(\tan ^{-1} y-1\right) e^{\tan ^{-1} y}+C\)
3 \(x=\tan ^{-1} y-1+\mathrm{Ce}^{-\tan ^{-1} y}\)
4 None of above