Homogeneous Differential Equation
Differential Equation

87508 The differential equation of all straight lines passing through the point \((1,-1)\) is

1 \(y=(x+1) \frac{d y}{d x}+1\)
2 \(y=(x+1) \frac{d y}{d x}-1\)
3 \(y=(x-1) \frac{d y}{d x}+1\)
4 \(y=(x-1) \frac{d y}{d x}-1\)
Differential Equation

87509 The function \(y\) specified implicitly by the relation \(\int_{0}^{y} e^{t} d t+\int_{0}^{x} \cos t d t=0\) satisfies the differential equation

1 \(\mathrm{e}^{2 \mathrm{y}}\left(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}\right)=\sin \mathrm{x}\)
2 \(e^{y}\left(\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right)=\sin 2 x\)
3 \(e^{y}\left(2 \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right)=\sin x\)
4 \(e^{y}\left(\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right)=\sin x\)
Differential Equation

87511 The integrating factor of the differential equation \( \frac{d y}{d x}+\frac{1}{x} y=3 x \) is:

1 \( x \)
2 \( \ln x \)
3 0
4 \( \infty \)
Differential Equation

87512 Which of the following is a homogeneous differential equation?

1 \((4 x+6 y+5) d y-(3 y+2 x+4) d x=0\)
2 \(x y d x-\left(x^{3}+y^{3}\right) d y=0\)
3 \(\left(x^{3}+2 y^{2}\right) d y+2 x y_{1} d y=0\)
4 \(y^{2} d x+\left(x^{2}-x y-y^{2}\right) d y=0\)
Differential Equation

87513 Which of the following is a homogeneous differential equation \(\left(1+x^{2}\right) d y+2 x y d x=\cot x d x, x \neq 0\) is

1 \(\frac{1}{1+\mathrm{x}^{2}}\)
2 \(\log \left(1+x^{2}\right)\)
3 \(1+x^{2}\)
4 \(-\frac{1}{\mathrm{x}}\)
Differential Equation

87508 The differential equation of all straight lines passing through the point \((1,-1)\) is

1 \(y=(x+1) \frac{d y}{d x}+1\)
2 \(y=(x+1) \frac{d y}{d x}-1\)
3 \(y=(x-1) \frac{d y}{d x}+1\)
4 \(y=(x-1) \frac{d y}{d x}-1\)
Differential Equation

87509 The function \(y\) specified implicitly by the relation \(\int_{0}^{y} e^{t} d t+\int_{0}^{x} \cos t d t=0\) satisfies the differential equation

1 \(\mathrm{e}^{2 \mathrm{y}}\left(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}\right)=\sin \mathrm{x}\)
2 \(e^{y}\left(\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right)=\sin 2 x\)
3 \(e^{y}\left(2 \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right)=\sin x\)
4 \(e^{y}\left(\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right)=\sin x\)
Differential Equation

87511 The integrating factor of the differential equation \( \frac{d y}{d x}+\frac{1}{x} y=3 x \) is:

1 \( x \)
2 \( \ln x \)
3 0
4 \( \infty \)
Differential Equation

87512 Which of the following is a homogeneous differential equation?

1 \((4 x+6 y+5) d y-(3 y+2 x+4) d x=0\)
2 \(x y d x-\left(x^{3}+y^{3}\right) d y=0\)
3 \(\left(x^{3}+2 y^{2}\right) d y+2 x y_{1} d y=0\)
4 \(y^{2} d x+\left(x^{2}-x y-y^{2}\right) d y=0\)
Differential Equation

87513 Which of the following is a homogeneous differential equation \(\left(1+x^{2}\right) d y+2 x y d x=\cot x d x, x \neq 0\) is

1 \(\frac{1}{1+\mathrm{x}^{2}}\)
2 \(\log \left(1+x^{2}\right)\)
3 \(1+x^{2}\)
4 \(-\frac{1}{\mathrm{x}}\)
Differential Equation

87508 The differential equation of all straight lines passing through the point \((1,-1)\) is

1 \(y=(x+1) \frac{d y}{d x}+1\)
2 \(y=(x+1) \frac{d y}{d x}-1\)
3 \(y=(x-1) \frac{d y}{d x}+1\)
4 \(y=(x-1) \frac{d y}{d x}-1\)
Differential Equation

87509 The function \(y\) specified implicitly by the relation \(\int_{0}^{y} e^{t} d t+\int_{0}^{x} \cos t d t=0\) satisfies the differential equation

1 \(\mathrm{e}^{2 \mathrm{y}}\left(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}\right)=\sin \mathrm{x}\)
2 \(e^{y}\left(\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right)=\sin 2 x\)
3 \(e^{y}\left(2 \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right)=\sin x\)
4 \(e^{y}\left(\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right)=\sin x\)
Differential Equation

87511 The integrating factor of the differential equation \( \frac{d y}{d x}+\frac{1}{x} y=3 x \) is:

1 \( x \)
2 \( \ln x \)
3 0
4 \( \infty \)
Differential Equation

87512 Which of the following is a homogeneous differential equation?

1 \((4 x+6 y+5) d y-(3 y+2 x+4) d x=0\)
2 \(x y d x-\left(x^{3}+y^{3}\right) d y=0\)
3 \(\left(x^{3}+2 y^{2}\right) d y+2 x y_{1} d y=0\)
4 \(y^{2} d x+\left(x^{2}-x y-y^{2}\right) d y=0\)
Differential Equation

87513 Which of the following is a homogeneous differential equation \(\left(1+x^{2}\right) d y+2 x y d x=\cot x d x, x \neq 0\) is

1 \(\frac{1}{1+\mathrm{x}^{2}}\)
2 \(\log \left(1+x^{2}\right)\)
3 \(1+x^{2}\)
4 \(-\frac{1}{\mathrm{x}}\)
Differential Equation

87508 The differential equation of all straight lines passing through the point \((1,-1)\) is

1 \(y=(x+1) \frac{d y}{d x}+1\)
2 \(y=(x+1) \frac{d y}{d x}-1\)
3 \(y=(x-1) \frac{d y}{d x}+1\)
4 \(y=(x-1) \frac{d y}{d x}-1\)
Differential Equation

87509 The function \(y\) specified implicitly by the relation \(\int_{0}^{y} e^{t} d t+\int_{0}^{x} \cos t d t=0\) satisfies the differential equation

1 \(\mathrm{e}^{2 \mathrm{y}}\left(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}\right)=\sin \mathrm{x}\)
2 \(e^{y}\left(\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right)=\sin 2 x\)
3 \(e^{y}\left(2 \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right)=\sin x\)
4 \(e^{y}\left(\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right)=\sin x\)
Differential Equation

87511 The integrating factor of the differential equation \( \frac{d y}{d x}+\frac{1}{x} y=3 x \) is:

1 \( x \)
2 \( \ln x \)
3 0
4 \( \infty \)
Differential Equation

87512 Which of the following is a homogeneous differential equation?

1 \((4 x+6 y+5) d y-(3 y+2 x+4) d x=0\)
2 \(x y d x-\left(x^{3}+y^{3}\right) d y=0\)
3 \(\left(x^{3}+2 y^{2}\right) d y+2 x y_{1} d y=0\)
4 \(y^{2} d x+\left(x^{2}-x y-y^{2}\right) d y=0\)
Differential Equation

87513 Which of the following is a homogeneous differential equation \(\left(1+x^{2}\right) d y+2 x y d x=\cot x d x, x \neq 0\) is

1 \(\frac{1}{1+\mathrm{x}^{2}}\)
2 \(\log \left(1+x^{2}\right)\)
3 \(1+x^{2}\)
4 \(-\frac{1}{\mathrm{x}}\)
Differential Equation

87508 The differential equation of all straight lines passing through the point \((1,-1)\) is

1 \(y=(x+1) \frac{d y}{d x}+1\)
2 \(y=(x+1) \frac{d y}{d x}-1\)
3 \(y=(x-1) \frac{d y}{d x}+1\)
4 \(y=(x-1) \frac{d y}{d x}-1\)
Differential Equation

87509 The function \(y\) specified implicitly by the relation \(\int_{0}^{y} e^{t} d t+\int_{0}^{x} \cos t d t=0\) satisfies the differential equation

1 \(\mathrm{e}^{2 \mathrm{y}}\left(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}\right)=\sin \mathrm{x}\)
2 \(e^{y}\left(\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right)=\sin 2 x\)
3 \(e^{y}\left(2 \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right)=\sin x\)
4 \(e^{y}\left(\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right)=\sin x\)
Differential Equation

87511 The integrating factor of the differential equation \( \frac{d y}{d x}+\frac{1}{x} y=3 x \) is:

1 \( x \)
2 \( \ln x \)
3 0
4 \( \infty \)
Differential Equation

87512 Which of the following is a homogeneous differential equation?

1 \((4 x+6 y+5) d y-(3 y+2 x+4) d x=0\)
2 \(x y d x-\left(x^{3}+y^{3}\right) d y=0\)
3 \(\left(x^{3}+2 y^{2}\right) d y+2 x y_{1} d y=0\)
4 \(y^{2} d x+\left(x^{2}-x y-y^{2}\right) d y=0\)
Differential Equation

87513 Which of the following is a homogeneous differential equation \(\left(1+x^{2}\right) d y+2 x y d x=\cot x d x, x \neq 0\) is

1 \(\frac{1}{1+\mathrm{x}^{2}}\)
2 \(\log \left(1+x^{2}\right)\)
3 \(1+x^{2}\)
4 \(-\frac{1}{\mathrm{x}}\)