Differential Equation
87326
The differential equation of the family of curves \(r^{2}=a^{2} \cos 2 \theta\) where ' \(a\) ' is an arbitrary constant is :
1 \(\frac{\mathrm{dr}}{\mathrm{d} \theta}=\mathrm{r} \cot 2 \theta\)
2 \(\frac{\mathrm{dr}}{\mathrm{d} \theta}=\mathrm{r} \tan 2 \theta\)
3 \(\frac{\mathrm{dr}}{\mathrm{d} \theta}=\mathrm{r} \sin 2 \theta\)
4 \(\cos 2 \theta \cdot \frac{d r}{d \theta}+r \sin 2 \theta=0\)
Explanation:
(D) : Given,
\(\mathrm{r}^{2}=\mathrm{a}^{2} \cos 2 \theta\)
On differentiating both sides, w.r.t. ' \(\theta\) ', we get-
\(2 \mathrm{r} \frac{\mathrm{dr}}{\mathrm{d} \theta}=-2 \mathrm{a}^{2} \sin 2 \theta \Rightarrow 2 \mathrm{r} \frac{\mathrm{dr}}{\mathrm{d} \theta}=-2\left(\frac{\mathrm{r}^{2}}{\cos 2 \theta}\right) \sin 2 \theta\)
\(2 \mathrm{r} \frac{\mathrm{dr}}{\mathrm{d} \theta}=-2 \mathrm{r}^{2} \tan 2 \theta \Rightarrow \frac{\mathrm{dr}}{\mathrm{d} \theta}=-\mathrm{r} \frac{\sin 2 \theta}{\cos 2 \theta}\)
\(\cos 2 \theta \frac{\mathrm{dr}}{\mathrm{d} \theta}+\mathrm{r} \sin 2 \theta=0\)