Integrating Factor
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Differential Equation

87307 The solution of the differential equation \(\frac{d y}{d x}-2 y \tan 2 x=e^{x} \sec 2 x\) is

1 \(y \sin 2 x=e^{x}+C\)
2 \(y \cos 2 x=e^{x}+C\)
3 \(y=e^{x} \cos 2 x+C\)
4 \(y \cos 2 x+e^{x}=C\)
Differential Equation

87308 If \(X\) is a poisson variation with \(P(X=0)=0.8\), then the variance of \(X\) is

1 \(\log _{\mathrm{e}} 20\)
2 \(\log _{10} 20\)
3 \(\log _{\mathrm{e}} 5 / 4\)
4 0
Differential Equation

87309 The differential equation of the family of parabolas with vertex at \((0,-1)\) and having axis along the \(\mathbf{Y}\)-axis is

1 \(y y^{\prime}+2 x y+1=0\)
2 \(x y^{\prime}+y+1=0\)
3 \(x y^{\prime}-2 y-2=0\)
4 \(x y^{\prime}-y-1=0\)
Differential Equation

87310 The solution of \(\frac{d y}{d x}+\frac{1}{x}=\frac{e^{y}}{x^{2}}\) is

1 \(2 x=\left(1+C x^{2}\right) e^{y}\)
2 \(\mathrm{x}=(1+\mathrm{Cx}) \mathrm{e}^{\mathrm{y}}\)
3 \(2 \mathrm{x}^{2}=\left(1+C \mathrm{x}^{2}\right) \mathrm{e}^{-\mathrm{y}}\)
4 \(\mathrm{x}^{2}=\left(1+C \mathrm{x}^{2}\right) \mathrm{e}^{-\mathrm{y}}\)
Differential Equation

87307 The solution of the differential equation \(\frac{d y}{d x}-2 y \tan 2 x=e^{x} \sec 2 x\) is

1 \(y \sin 2 x=e^{x}+C\)
2 \(y \cos 2 x=e^{x}+C\)
3 \(y=e^{x} \cos 2 x+C\)
4 \(y \cos 2 x+e^{x}=C\)
Differential Equation

87308 If \(X\) is a poisson variation with \(P(X=0)=0.8\), then the variance of \(X\) is

1 \(\log _{\mathrm{e}} 20\)
2 \(\log _{10} 20\)
3 \(\log _{\mathrm{e}} 5 / 4\)
4 0
Differential Equation

87309 The differential equation of the family of parabolas with vertex at \((0,-1)\) and having axis along the \(\mathbf{Y}\)-axis is

1 \(y y^{\prime}+2 x y+1=0\)
2 \(x y^{\prime}+y+1=0\)
3 \(x y^{\prime}-2 y-2=0\)
4 \(x y^{\prime}-y-1=0\)
Differential Equation

87310 The solution of \(\frac{d y}{d x}+\frac{1}{x}=\frac{e^{y}}{x^{2}}\) is

1 \(2 x=\left(1+C x^{2}\right) e^{y}\)
2 \(\mathrm{x}=(1+\mathrm{Cx}) \mathrm{e}^{\mathrm{y}}\)
3 \(2 \mathrm{x}^{2}=\left(1+C \mathrm{x}^{2}\right) \mathrm{e}^{-\mathrm{y}}\)
4 \(\mathrm{x}^{2}=\left(1+C \mathrm{x}^{2}\right) \mathrm{e}^{-\mathrm{y}}\)
Differential Equation

87307 The solution of the differential equation \(\frac{d y}{d x}-2 y \tan 2 x=e^{x} \sec 2 x\) is

1 \(y \sin 2 x=e^{x}+C\)
2 \(y \cos 2 x=e^{x}+C\)
3 \(y=e^{x} \cos 2 x+C\)
4 \(y \cos 2 x+e^{x}=C\)
Differential Equation

87308 If \(X\) is a poisson variation with \(P(X=0)=0.8\), then the variance of \(X\) is

1 \(\log _{\mathrm{e}} 20\)
2 \(\log _{10} 20\)
3 \(\log _{\mathrm{e}} 5 / 4\)
4 0
Differential Equation

87309 The differential equation of the family of parabolas with vertex at \((0,-1)\) and having axis along the \(\mathbf{Y}\)-axis is

1 \(y y^{\prime}+2 x y+1=0\)
2 \(x y^{\prime}+y+1=0\)
3 \(x y^{\prime}-2 y-2=0\)
4 \(x y^{\prime}-y-1=0\)
Differential Equation

87310 The solution of \(\frac{d y}{d x}+\frac{1}{x}=\frac{e^{y}}{x^{2}}\) is

1 \(2 x=\left(1+C x^{2}\right) e^{y}\)
2 \(\mathrm{x}=(1+\mathrm{Cx}) \mathrm{e}^{\mathrm{y}}\)
3 \(2 \mathrm{x}^{2}=\left(1+C \mathrm{x}^{2}\right) \mathrm{e}^{-\mathrm{y}}\)
4 \(\mathrm{x}^{2}=\left(1+C \mathrm{x}^{2}\right) \mathrm{e}^{-\mathrm{y}}\)
Differential Equation

87307 The solution of the differential equation \(\frac{d y}{d x}-2 y \tan 2 x=e^{x} \sec 2 x\) is

1 \(y \sin 2 x=e^{x}+C\)
2 \(y \cos 2 x=e^{x}+C\)
3 \(y=e^{x} \cos 2 x+C\)
4 \(y \cos 2 x+e^{x}=C\)
Differential Equation

87308 If \(X\) is a poisson variation with \(P(X=0)=0.8\), then the variance of \(X\) is

1 \(\log _{\mathrm{e}} 20\)
2 \(\log _{10} 20\)
3 \(\log _{\mathrm{e}} 5 / 4\)
4 0
Differential Equation

87309 The differential equation of the family of parabolas with vertex at \((0,-1)\) and having axis along the \(\mathbf{Y}\)-axis is

1 \(y y^{\prime}+2 x y+1=0\)
2 \(x y^{\prime}+y+1=0\)
3 \(x y^{\prime}-2 y-2=0\)
4 \(x y^{\prime}-y-1=0\)
Differential Equation

87310 The solution of \(\frac{d y}{d x}+\frac{1}{x}=\frac{e^{y}}{x^{2}}\) is

1 \(2 x=\left(1+C x^{2}\right) e^{y}\)
2 \(\mathrm{x}=(1+\mathrm{Cx}) \mathrm{e}^{\mathrm{y}}\)
3 \(2 \mathrm{x}^{2}=\left(1+C \mathrm{x}^{2}\right) \mathrm{e}^{-\mathrm{y}}\)
4 \(\mathrm{x}^{2}=\left(1+C \mathrm{x}^{2}\right) \mathrm{e}^{-\mathrm{y}}\)