Integrating Factor
Differential Equation

87273 The general solution of differential equation
\(\frac{d y}{d x}+2 x y=2 e^{-x^{2}} \text { is }\)

1 \(y=2 x e^{-x}\)
2 \(y=(2 x+c) e^{-x^{2}}\)
3 \(y=2 x e^{x}\)
4 \(y=(2 x+c) e^{x^{2}}\)
Differential Equation

87274 The integrating factor of the D.E.
\((x \log x) \frac{d y}{d x}+y=2 \log x\) is

1 \(\log (\log x)\)
2 \(\mathrm{e}^{\mathrm{x}}\)
3 \(\log \mathrm{x}\)
4 \(x\)
Differential Equation

87275 If \(y=y(x), x \in(0, \pi / 2)\) be the solution curve of the differential equation \(\left(\sin ^{2} 2 x\right) \frac{d y}{d x}+\left(8 \sin ^{2} 2 x+2 \sin 4 x\right) y=2 e^{-4 x}(2 \sin 2 x+\cos 2 x)\) with, \(y(\pi / 4)=e^{-\pi}\), then \(y(\pi / 6)\) is equal to :

1 \(\frac{2}{\sqrt{3}} \mathrm{e}^{-2 \pi / 3}\)
2 \(\frac{2}{\sqrt{3}} \mathrm{e}^{2 \pi / 3}\)
3 \(\frac{1}{\sqrt{3}} \mathrm{e}^{-2 \pi / 3}\)
4 \(\frac{1}{\sqrt{3}} \mathrm{e}^{2 \pi / 3}\)
Differential Equation

87276 Let the solution curve \(y=y(x)\) of the differential equation
\(\frac{d y}{d x}-\frac{3 x^{5} \tan ^{-1}\left(x^{3}\right)}{\left(1+x^{6}\right)^{\frac{3}{2}}} y=2 x \exp \left\{\frac{x^{3}-\tan ^{-1} x^{3}}{\sqrt{\left(1+x^{6}\right)}}\right\}\)
pass through the origin. Then \(y(1)\) is equal to :

1 \(\exp \left(\frac{4+\pi}{4 \sqrt{2}}\right)\)
2 \(\exp \left(\frac{4-\pi}{4 \sqrt{2}}\right)\)
3 \(\exp \left(\frac{1-\pi}{4 \sqrt{2}}\right)\)
4 \(\exp \left(\frac{\pi-4}{4 \sqrt{2}}\right)\)
Differential Equation

87273 The general solution of differential equation
\(\frac{d y}{d x}+2 x y=2 e^{-x^{2}} \text { is }\)

1 \(y=2 x e^{-x}\)
2 \(y=(2 x+c) e^{-x^{2}}\)
3 \(y=2 x e^{x}\)
4 \(y=(2 x+c) e^{x^{2}}\)
Differential Equation

87274 The integrating factor of the D.E.
\((x \log x) \frac{d y}{d x}+y=2 \log x\) is

1 \(\log (\log x)\)
2 \(\mathrm{e}^{\mathrm{x}}\)
3 \(\log \mathrm{x}\)
4 \(x\)
Differential Equation

87275 If \(y=y(x), x \in(0, \pi / 2)\) be the solution curve of the differential equation \(\left(\sin ^{2} 2 x\right) \frac{d y}{d x}+\left(8 \sin ^{2} 2 x+2 \sin 4 x\right) y=2 e^{-4 x}(2 \sin 2 x+\cos 2 x)\) with, \(y(\pi / 4)=e^{-\pi}\), then \(y(\pi / 6)\) is equal to :

1 \(\frac{2}{\sqrt{3}} \mathrm{e}^{-2 \pi / 3}\)
2 \(\frac{2}{\sqrt{3}} \mathrm{e}^{2 \pi / 3}\)
3 \(\frac{1}{\sqrt{3}} \mathrm{e}^{-2 \pi / 3}\)
4 \(\frac{1}{\sqrt{3}} \mathrm{e}^{2 \pi / 3}\)
Differential Equation

87276 Let the solution curve \(y=y(x)\) of the differential equation
\(\frac{d y}{d x}-\frac{3 x^{5} \tan ^{-1}\left(x^{3}\right)}{\left(1+x^{6}\right)^{\frac{3}{2}}} y=2 x \exp \left\{\frac{x^{3}-\tan ^{-1} x^{3}}{\sqrt{\left(1+x^{6}\right)}}\right\}\)
pass through the origin. Then \(y(1)\) is equal to :

1 \(\exp \left(\frac{4+\pi}{4 \sqrt{2}}\right)\)
2 \(\exp \left(\frac{4-\pi}{4 \sqrt{2}}\right)\)
3 \(\exp \left(\frac{1-\pi}{4 \sqrt{2}}\right)\)
4 \(\exp \left(\frac{\pi-4}{4 \sqrt{2}}\right)\)
Differential Equation

87273 The general solution of differential equation
\(\frac{d y}{d x}+2 x y=2 e^{-x^{2}} \text { is }\)

1 \(y=2 x e^{-x}\)
2 \(y=(2 x+c) e^{-x^{2}}\)
3 \(y=2 x e^{x}\)
4 \(y=(2 x+c) e^{x^{2}}\)
Differential Equation

87274 The integrating factor of the D.E.
\((x \log x) \frac{d y}{d x}+y=2 \log x\) is

1 \(\log (\log x)\)
2 \(\mathrm{e}^{\mathrm{x}}\)
3 \(\log \mathrm{x}\)
4 \(x\)
Differential Equation

87275 If \(y=y(x), x \in(0, \pi / 2)\) be the solution curve of the differential equation \(\left(\sin ^{2} 2 x\right) \frac{d y}{d x}+\left(8 \sin ^{2} 2 x+2 \sin 4 x\right) y=2 e^{-4 x}(2 \sin 2 x+\cos 2 x)\) with, \(y(\pi / 4)=e^{-\pi}\), then \(y(\pi / 6)\) is equal to :

1 \(\frac{2}{\sqrt{3}} \mathrm{e}^{-2 \pi / 3}\)
2 \(\frac{2}{\sqrt{3}} \mathrm{e}^{2 \pi / 3}\)
3 \(\frac{1}{\sqrt{3}} \mathrm{e}^{-2 \pi / 3}\)
4 \(\frac{1}{\sqrt{3}} \mathrm{e}^{2 \pi / 3}\)
Differential Equation

87276 Let the solution curve \(y=y(x)\) of the differential equation
\(\frac{d y}{d x}-\frac{3 x^{5} \tan ^{-1}\left(x^{3}\right)}{\left(1+x^{6}\right)^{\frac{3}{2}}} y=2 x \exp \left\{\frac{x^{3}-\tan ^{-1} x^{3}}{\sqrt{\left(1+x^{6}\right)}}\right\}\)
pass through the origin. Then \(y(1)\) is equal to :

1 \(\exp \left(\frac{4+\pi}{4 \sqrt{2}}\right)\)
2 \(\exp \left(\frac{4-\pi}{4 \sqrt{2}}\right)\)
3 \(\exp \left(\frac{1-\pi}{4 \sqrt{2}}\right)\)
4 \(\exp \left(\frac{\pi-4}{4 \sqrt{2}}\right)\)
Differential Equation

87273 The general solution of differential equation
\(\frac{d y}{d x}+2 x y=2 e^{-x^{2}} \text { is }\)

1 \(y=2 x e^{-x}\)
2 \(y=(2 x+c) e^{-x^{2}}\)
3 \(y=2 x e^{x}\)
4 \(y=(2 x+c) e^{x^{2}}\)
Differential Equation

87274 The integrating factor of the D.E.
\((x \log x) \frac{d y}{d x}+y=2 \log x\) is

1 \(\log (\log x)\)
2 \(\mathrm{e}^{\mathrm{x}}\)
3 \(\log \mathrm{x}\)
4 \(x\)
Differential Equation

87275 If \(y=y(x), x \in(0, \pi / 2)\) be the solution curve of the differential equation \(\left(\sin ^{2} 2 x\right) \frac{d y}{d x}+\left(8 \sin ^{2} 2 x+2 \sin 4 x\right) y=2 e^{-4 x}(2 \sin 2 x+\cos 2 x)\) with, \(y(\pi / 4)=e^{-\pi}\), then \(y(\pi / 6)\) is equal to :

1 \(\frac{2}{\sqrt{3}} \mathrm{e}^{-2 \pi / 3}\)
2 \(\frac{2}{\sqrt{3}} \mathrm{e}^{2 \pi / 3}\)
3 \(\frac{1}{\sqrt{3}} \mathrm{e}^{-2 \pi / 3}\)
4 \(\frac{1}{\sqrt{3}} \mathrm{e}^{2 \pi / 3}\)
Differential Equation

87276 Let the solution curve \(y=y(x)\) of the differential equation
\(\frac{d y}{d x}-\frac{3 x^{5} \tan ^{-1}\left(x^{3}\right)}{\left(1+x^{6}\right)^{\frac{3}{2}}} y=2 x \exp \left\{\frac{x^{3}-\tan ^{-1} x^{3}}{\sqrt{\left(1+x^{6}\right)}}\right\}\)
pass through the origin. Then \(y(1)\) is equal to :

1 \(\exp \left(\frac{4+\pi}{4 \sqrt{2}}\right)\)
2 \(\exp \left(\frac{4-\pi}{4 \sqrt{2}}\right)\)
3 \(\exp \left(\frac{1-\pi}{4 \sqrt{2}}\right)\)
4 \(\exp \left(\frac{\pi-4}{4 \sqrt{2}}\right)\)