Integrating Factor
Differential Equation

87270 Let \(y=y(x)\) be the solution curve of the differential equation \(\frac{d y}{d x}=\frac{y}{x}\) \(\left(1+x y^{2}\left(1+\log _{e} x\right)\right), x>0, y(1)=3\). Then \(\frac{y^{2}(x)}{9}\) is equal to:

1 \(\frac{x^{2}}{5-2 x^{3}\left(2+\log _{e} x^{3}\right)}\)
2 \(\frac{x^{2}}{3 x^{3}\left(1+\log _{e} x^{2}\right)-2}\)
3 \(\frac{x^{2}}{7-3 x^{3}\left(2+\log _{e} x^{2}\right)}\)
4 \(\frac{x^{2}}{2 x^{3}\left(2+\log _{e} x^{3}\right)-3}\)
Differential Equation

87284 \(y+x^{2}=\frac{d y}{d x}\) has the solution

1 \(y+x^{2}+2 x+2=c e^{x}\)
2 \(y+x+2 x^{2}+2=c e^{x}\)
3 \(y^{2}+x+x^{2}+2=c e^{2 x}\)
4 \(y+x+x^{2}+2=c e^{2 x}\)
Differential Equation

87285 The general solution of
\(\frac{d y}{d x}+y \tan x=2 x+x^{2} \tan x\)

1 \(y-x^{2}=c \sec x\)
2 \(y \cos x=x^{2} \sec x+c\)
3 \(y \sec x=x^{2}+c \cos x\)
4 \(y=x^{2}+c \cos x\)
Differential Equation

87271 The solution of the differential equation \(\frac{d y}{d x}=-\left(\frac{x^{2}+3 y^{2}}{3 x^{2}+y^{2}}\right), y(1)=0\) is

1 \(\log _{e}|x+y|-\frac{x y}{(x+y)^{2}}=0\)
2 \(\log _{e}|x+y|-\frac{2 x y}{(x+y)^{2}}=0\)
3 \(\log _{e}|x+y|+\frac{x y}{(x+y)^{2}}=0\)
4 \(\log _{e}|x+y|+\frac{2 x y}{(x+y)^{2}}=0\)
Differential Equation

87272 The general solution of the differential equation \(\left(1+y^{2}\right) \mathbf{d x}+\left(1+\mathbf{x}^{2}\right) \mathbf{d y}=\mathbf{0}\) is

1 \(x-y=c(1-x y)\)
2 \(x-y=c(1-x y)\)
3 \(x+y=c(1-x y)\)
4 \(x+y=c(1+x y)\)
Differential Equation

87270 Let \(y=y(x)\) be the solution curve of the differential equation \(\frac{d y}{d x}=\frac{y}{x}\) \(\left(1+x y^{2}\left(1+\log _{e} x\right)\right), x>0, y(1)=3\). Then \(\frac{y^{2}(x)}{9}\) is equal to:

1 \(\frac{x^{2}}{5-2 x^{3}\left(2+\log _{e} x^{3}\right)}\)
2 \(\frac{x^{2}}{3 x^{3}\left(1+\log _{e} x^{2}\right)-2}\)
3 \(\frac{x^{2}}{7-3 x^{3}\left(2+\log _{e} x^{2}\right)}\)
4 \(\frac{x^{2}}{2 x^{3}\left(2+\log _{e} x^{3}\right)-3}\)
Differential Equation

87284 \(y+x^{2}=\frac{d y}{d x}\) has the solution

1 \(y+x^{2}+2 x+2=c e^{x}\)
2 \(y+x+2 x^{2}+2=c e^{x}\)
3 \(y^{2}+x+x^{2}+2=c e^{2 x}\)
4 \(y+x+x^{2}+2=c e^{2 x}\)
Differential Equation

87285 The general solution of
\(\frac{d y}{d x}+y \tan x=2 x+x^{2} \tan x\)

1 \(y-x^{2}=c \sec x\)
2 \(y \cos x=x^{2} \sec x+c\)
3 \(y \sec x=x^{2}+c \cos x\)
4 \(y=x^{2}+c \cos x\)
Differential Equation

87271 The solution of the differential equation \(\frac{d y}{d x}=-\left(\frac{x^{2}+3 y^{2}}{3 x^{2}+y^{2}}\right), y(1)=0\) is

1 \(\log _{e}|x+y|-\frac{x y}{(x+y)^{2}}=0\)
2 \(\log _{e}|x+y|-\frac{2 x y}{(x+y)^{2}}=0\)
3 \(\log _{e}|x+y|+\frac{x y}{(x+y)^{2}}=0\)
4 \(\log _{e}|x+y|+\frac{2 x y}{(x+y)^{2}}=0\)
Differential Equation

87272 The general solution of the differential equation \(\left(1+y^{2}\right) \mathbf{d x}+\left(1+\mathbf{x}^{2}\right) \mathbf{d y}=\mathbf{0}\) is

1 \(x-y=c(1-x y)\)
2 \(x-y=c(1-x y)\)
3 \(x+y=c(1-x y)\)
4 \(x+y=c(1+x y)\)
Differential Equation

87270 Let \(y=y(x)\) be the solution curve of the differential equation \(\frac{d y}{d x}=\frac{y}{x}\) \(\left(1+x y^{2}\left(1+\log _{e} x\right)\right), x>0, y(1)=3\). Then \(\frac{y^{2}(x)}{9}\) is equal to:

1 \(\frac{x^{2}}{5-2 x^{3}\left(2+\log _{e} x^{3}\right)}\)
2 \(\frac{x^{2}}{3 x^{3}\left(1+\log _{e} x^{2}\right)-2}\)
3 \(\frac{x^{2}}{7-3 x^{3}\left(2+\log _{e} x^{2}\right)}\)
4 \(\frac{x^{2}}{2 x^{3}\left(2+\log _{e} x^{3}\right)-3}\)
Differential Equation

87284 \(y+x^{2}=\frac{d y}{d x}\) has the solution

1 \(y+x^{2}+2 x+2=c e^{x}\)
2 \(y+x+2 x^{2}+2=c e^{x}\)
3 \(y^{2}+x+x^{2}+2=c e^{2 x}\)
4 \(y+x+x^{2}+2=c e^{2 x}\)
Differential Equation

87285 The general solution of
\(\frac{d y}{d x}+y \tan x=2 x+x^{2} \tan x\)

1 \(y-x^{2}=c \sec x\)
2 \(y \cos x=x^{2} \sec x+c\)
3 \(y \sec x=x^{2}+c \cos x\)
4 \(y=x^{2}+c \cos x\)
Differential Equation

87271 The solution of the differential equation \(\frac{d y}{d x}=-\left(\frac{x^{2}+3 y^{2}}{3 x^{2}+y^{2}}\right), y(1)=0\) is

1 \(\log _{e}|x+y|-\frac{x y}{(x+y)^{2}}=0\)
2 \(\log _{e}|x+y|-\frac{2 x y}{(x+y)^{2}}=0\)
3 \(\log _{e}|x+y|+\frac{x y}{(x+y)^{2}}=0\)
4 \(\log _{e}|x+y|+\frac{2 x y}{(x+y)^{2}}=0\)
Differential Equation

87272 The general solution of the differential equation \(\left(1+y^{2}\right) \mathbf{d x}+\left(1+\mathbf{x}^{2}\right) \mathbf{d y}=\mathbf{0}\) is

1 \(x-y=c(1-x y)\)
2 \(x-y=c(1-x y)\)
3 \(x+y=c(1-x y)\)
4 \(x+y=c(1+x y)\)
Differential Equation

87270 Let \(y=y(x)\) be the solution curve of the differential equation \(\frac{d y}{d x}=\frac{y}{x}\) \(\left(1+x y^{2}\left(1+\log _{e} x\right)\right), x>0, y(1)=3\). Then \(\frac{y^{2}(x)}{9}\) is equal to:

1 \(\frac{x^{2}}{5-2 x^{3}\left(2+\log _{e} x^{3}\right)}\)
2 \(\frac{x^{2}}{3 x^{3}\left(1+\log _{e} x^{2}\right)-2}\)
3 \(\frac{x^{2}}{7-3 x^{3}\left(2+\log _{e} x^{2}\right)}\)
4 \(\frac{x^{2}}{2 x^{3}\left(2+\log _{e} x^{3}\right)-3}\)
Differential Equation

87284 \(y+x^{2}=\frac{d y}{d x}\) has the solution

1 \(y+x^{2}+2 x+2=c e^{x}\)
2 \(y+x+2 x^{2}+2=c e^{x}\)
3 \(y^{2}+x+x^{2}+2=c e^{2 x}\)
4 \(y+x+x^{2}+2=c e^{2 x}\)
Differential Equation

87285 The general solution of
\(\frac{d y}{d x}+y \tan x=2 x+x^{2} \tan x\)

1 \(y-x^{2}=c \sec x\)
2 \(y \cos x=x^{2} \sec x+c\)
3 \(y \sec x=x^{2}+c \cos x\)
4 \(y=x^{2}+c \cos x\)
Differential Equation

87271 The solution of the differential equation \(\frac{d y}{d x}=-\left(\frac{x^{2}+3 y^{2}}{3 x^{2}+y^{2}}\right), y(1)=0\) is

1 \(\log _{e}|x+y|-\frac{x y}{(x+y)^{2}}=0\)
2 \(\log _{e}|x+y|-\frac{2 x y}{(x+y)^{2}}=0\)
3 \(\log _{e}|x+y|+\frac{x y}{(x+y)^{2}}=0\)
4 \(\log _{e}|x+y|+\frac{2 x y}{(x+y)^{2}}=0\)
Differential Equation

87272 The general solution of the differential equation \(\left(1+y^{2}\right) \mathbf{d x}+\left(1+\mathbf{x}^{2}\right) \mathbf{d y}=\mathbf{0}\) is

1 \(x-y=c(1-x y)\)
2 \(x-y=c(1-x y)\)
3 \(x+y=c(1-x y)\)
4 \(x+y=c(1+x y)\)
Differential Equation

87270 Let \(y=y(x)\) be the solution curve of the differential equation \(\frac{d y}{d x}=\frac{y}{x}\) \(\left(1+x y^{2}\left(1+\log _{e} x\right)\right), x>0, y(1)=3\). Then \(\frac{y^{2}(x)}{9}\) is equal to:

1 \(\frac{x^{2}}{5-2 x^{3}\left(2+\log _{e} x^{3}\right)}\)
2 \(\frac{x^{2}}{3 x^{3}\left(1+\log _{e} x^{2}\right)-2}\)
3 \(\frac{x^{2}}{7-3 x^{3}\left(2+\log _{e} x^{2}\right)}\)
4 \(\frac{x^{2}}{2 x^{3}\left(2+\log _{e} x^{3}\right)-3}\)
Differential Equation

87284 \(y+x^{2}=\frac{d y}{d x}\) has the solution

1 \(y+x^{2}+2 x+2=c e^{x}\)
2 \(y+x+2 x^{2}+2=c e^{x}\)
3 \(y^{2}+x+x^{2}+2=c e^{2 x}\)
4 \(y+x+x^{2}+2=c e^{2 x}\)
Differential Equation

87285 The general solution of
\(\frac{d y}{d x}+y \tan x=2 x+x^{2} \tan x\)

1 \(y-x^{2}=c \sec x\)
2 \(y \cos x=x^{2} \sec x+c\)
3 \(y \sec x=x^{2}+c \cos x\)
4 \(y=x^{2}+c \cos x\)
Differential Equation

87271 The solution of the differential equation \(\frac{d y}{d x}=-\left(\frac{x^{2}+3 y^{2}}{3 x^{2}+y^{2}}\right), y(1)=0\) is

1 \(\log _{e}|x+y|-\frac{x y}{(x+y)^{2}}=0\)
2 \(\log _{e}|x+y|-\frac{2 x y}{(x+y)^{2}}=0\)
3 \(\log _{e}|x+y|+\frac{x y}{(x+y)^{2}}=0\)
4 \(\log _{e}|x+y|+\frac{2 x y}{(x+y)^{2}}=0\)
Differential Equation

87272 The general solution of the differential equation \(\left(1+y^{2}\right) \mathbf{d x}+\left(1+\mathbf{x}^{2}\right) \mathbf{d y}=\mathbf{0}\) is

1 \(x-y=c(1-x y)\)
2 \(x-y=c(1-x y)\)
3 \(x+y=c(1-x y)\)
4 \(x+y=c(1+x y)\)