Integrating Factor
Differential Equation

87249 The solution of the given differential equation \(\frac{d y}{d x}+2 x y=y\) is :

1 \(y=c e^{x-x^{2}}\)
2 \(y=c e^{x^{2}-x}\)
3 \(y=c e^{x}\)
4 \(y=c e^{-x^{2}}\)
Differential Equation

87250 The differential equation of all circles through the origin and having their centers on the \(x\) axis is

1 \(x^{2}-y^{2}=2 \frac{d y}{d x}\)
2 \(x^{2}-y^{2}=2 x y \frac{d y}{d x}\)
3 \(y^{2}-x^{2}=2 x y \frac{d y}{d x}\)
4 \(y^{2}-x^{2}=2 \frac{d y}{d x}\)
Differential Equation

87251 The differential equation \(y^{\prime \prime}+k y^{\prime}+4 y=0\) has solution of the form \(y=A e^{a x} \cos b x+B e^{a x} \sin b x\) for all values of \(k\), if

1 \(-4\lt \mathrm{k}\lt 4\)
2 \(\mathrm{k}\lt -4, \mathrm{k}>4\)
3 \(\mathrm{k}=0\) or 4
4 None of the above
Differential Equation

87252 The solution of the differential equation
\(\frac{d y}{d x}-\frac{y}{x}=1 \text { is }\)

1 \(x^{2} \log _{e} x+y=c\)
2 \(x \log _{e} x+c x=y\)
3 \(x^{2} \log _{e} x-y=c\)
4 \(x \log _{e} x+y=c x\)
Differential Equation

87249 The solution of the given differential equation \(\frac{d y}{d x}+2 x y=y\) is :

1 \(y=c e^{x-x^{2}}\)
2 \(y=c e^{x^{2}-x}\)
3 \(y=c e^{x}\)
4 \(y=c e^{-x^{2}}\)
Differential Equation

87250 The differential equation of all circles through the origin and having their centers on the \(x\) axis is

1 \(x^{2}-y^{2}=2 \frac{d y}{d x}\)
2 \(x^{2}-y^{2}=2 x y \frac{d y}{d x}\)
3 \(y^{2}-x^{2}=2 x y \frac{d y}{d x}\)
4 \(y^{2}-x^{2}=2 \frac{d y}{d x}\)
Differential Equation

87251 The differential equation \(y^{\prime \prime}+k y^{\prime}+4 y=0\) has solution of the form \(y=A e^{a x} \cos b x+B e^{a x} \sin b x\) for all values of \(k\), if

1 \(-4\lt \mathrm{k}\lt 4\)
2 \(\mathrm{k}\lt -4, \mathrm{k}>4\)
3 \(\mathrm{k}=0\) or 4
4 None of the above
Differential Equation

87252 The solution of the differential equation
\(\frac{d y}{d x}-\frac{y}{x}=1 \text { is }\)

1 \(x^{2} \log _{e} x+y=c\)
2 \(x \log _{e} x+c x=y\)
3 \(x^{2} \log _{e} x-y=c\)
4 \(x \log _{e} x+y=c x\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Differential Equation

87249 The solution of the given differential equation \(\frac{d y}{d x}+2 x y=y\) is :

1 \(y=c e^{x-x^{2}}\)
2 \(y=c e^{x^{2}-x}\)
3 \(y=c e^{x}\)
4 \(y=c e^{-x^{2}}\)
Differential Equation

87250 The differential equation of all circles through the origin and having their centers on the \(x\) axis is

1 \(x^{2}-y^{2}=2 \frac{d y}{d x}\)
2 \(x^{2}-y^{2}=2 x y \frac{d y}{d x}\)
3 \(y^{2}-x^{2}=2 x y \frac{d y}{d x}\)
4 \(y^{2}-x^{2}=2 \frac{d y}{d x}\)
Differential Equation

87251 The differential equation \(y^{\prime \prime}+k y^{\prime}+4 y=0\) has solution of the form \(y=A e^{a x} \cos b x+B e^{a x} \sin b x\) for all values of \(k\), if

1 \(-4\lt \mathrm{k}\lt 4\)
2 \(\mathrm{k}\lt -4, \mathrm{k}>4\)
3 \(\mathrm{k}=0\) or 4
4 None of the above
Differential Equation

87252 The solution of the differential equation
\(\frac{d y}{d x}-\frac{y}{x}=1 \text { is }\)

1 \(x^{2} \log _{e} x+y=c\)
2 \(x \log _{e} x+c x=y\)
3 \(x^{2} \log _{e} x-y=c\)
4 \(x \log _{e} x+y=c x\)
Differential Equation

87249 The solution of the given differential equation \(\frac{d y}{d x}+2 x y=y\) is :

1 \(y=c e^{x-x^{2}}\)
2 \(y=c e^{x^{2}-x}\)
3 \(y=c e^{x}\)
4 \(y=c e^{-x^{2}}\)
Differential Equation

87250 The differential equation of all circles through the origin and having their centers on the \(x\) axis is

1 \(x^{2}-y^{2}=2 \frac{d y}{d x}\)
2 \(x^{2}-y^{2}=2 x y \frac{d y}{d x}\)
3 \(y^{2}-x^{2}=2 x y \frac{d y}{d x}\)
4 \(y^{2}-x^{2}=2 \frac{d y}{d x}\)
Differential Equation

87251 The differential equation \(y^{\prime \prime}+k y^{\prime}+4 y=0\) has solution of the form \(y=A e^{a x} \cos b x+B e^{a x} \sin b x\) for all values of \(k\), if

1 \(-4\lt \mathrm{k}\lt 4\)
2 \(\mathrm{k}\lt -4, \mathrm{k}>4\)
3 \(\mathrm{k}=0\) or 4
4 None of the above
Differential Equation

87252 The solution of the differential equation
\(\frac{d y}{d x}-\frac{y}{x}=1 \text { is }\)

1 \(x^{2} \log _{e} x+y=c\)
2 \(x \log _{e} x+c x=y\)
3 \(x^{2} \log _{e} x-y=c\)
4 \(x \log _{e} x+y=c x\)