Integrating Factor
Differential Equation

87229 The solution of differential equation
4xydydx=3(1+x)2(1+y2)(1+x2) is

1 log(1+y)=logx+2tanx+ constant
2 log(1+y2)=3log(1x)+6tan1x+ constant
3 2log(1+y2)=3logx+6tan1x+ constant
4 None of the above
Differential Equation

87231 The solution of differential equation xcos2ydx =ycos2xdy is

1 xtanxytanylog(secx/secy)=c
2 ytanxxtanxlog(secxsecy)=c
3 xtanxytany+log(secxsecy)=c
4 None of the above
Differential Equation

87232 The solution of the differential equation
dydx=ytanx2sinx is 

1 ysinx=c+sin2x
2 ycosx=c+12sin2x
3 ycosx=csin2x
4 ycosx=c+12cos2x
Differential Equation

87229 The solution of differential equation
4xydydx=3(1+x)2(1+y2)(1+x2) is

1 log(1+y)=logx+2tanx+ constant
2 log(1+y2)=3log(1x)+6tan1x+ constant
3 2log(1+y2)=3logx+6tan1x+ constant
4 None of the above
Differential Equation

87230 If y2=P(x) be a cubic polynomial, then
2ddx(y3d2ydx2) is equal to

1 P(x)+P(x)
2 P(x)P(x)
3 P(x)P(x)
4 constant
Differential Equation

87231 The solution of differential equation xcos2ydx =ycos2xdy is

1 xtanxytanylog(secx/secy)=c
2 ytanxxtanxlog(secxsecy)=c
3 xtanxytany+log(secxsecy)=c
4 None of the above
Differential Equation

87232 The solution of the differential equation
dydx=ytanx2sinx is 

1 ysinx=c+sin2x
2 ycosx=c+12sin2x
3 ycosx=csin2x
4 ycosx=c+12cos2x
Differential Equation

87229 The solution of differential equation
4xydydx=3(1+x)2(1+y2)(1+x2) is

1 log(1+y)=logx+2tanx+ constant
2 log(1+y2)=3log(1x)+6tan1x+ constant
3 2log(1+y2)=3logx+6tan1x+ constant
4 None of the above
Differential Equation

87230 If y2=P(x) be a cubic polynomial, then
2ddx(y3d2ydx2) is equal to

1 P(x)+P(x)
2 P(x)P(x)
3 P(x)P(x)
4 constant
Differential Equation

87231 The solution of differential equation xcos2ydx =ycos2xdy is

1 xtanxytanylog(secx/secy)=c
2 ytanxxtanxlog(secxsecy)=c
3 xtanxytany+log(secxsecy)=c
4 None of the above
Differential Equation

87232 The solution of the differential equation
dydx=ytanx2sinx is 

1 ysinx=c+sin2x
2 ycosx=c+12sin2x
3 ycosx=csin2x
4 ycosx=c+12cos2x
Differential Equation

87229 The solution of differential equation
4xydydx=3(1+x)2(1+y2)(1+x2) is

1 log(1+y)=logx+2tanx+ constant
2 log(1+y2)=3log(1x)+6tan1x+ constant
3 2log(1+y2)=3logx+6tan1x+ constant
4 None of the above
Differential Equation

87230 If y2=P(x) be a cubic polynomial, then
2ddx(y3d2ydx2) is equal to

1 P(x)+P(x)
2 P(x)P(x)
3 P(x)P(x)
4 constant
Differential Equation

87231 The solution of differential equation xcos2ydx =ycos2xdy is

1 xtanxytanylog(secx/secy)=c
2 ytanxxtanxlog(secxsecy)=c
3 xtanxytany+log(secxsecy)=c
4 None of the above
Differential Equation

87232 The solution of the differential equation
dydx=ytanx2sinx is 

1 ysinx=c+sin2x
2 ycosx=c+12sin2x
3 ycosx=csin2x
4 ycosx=c+12cos2x