Integrating Factor
Differential Equation

87203 Solution of differential equation
\(\mathbf{x d y} \mathbf{-} \mathbf{y d x}=0\) represents

1 a rectangular hyperbola
2 parabola whose vertex is at origin
3 straight line passing through origin
4 a circle whose centre is origin
Differential Equation

87204 The solution of \(\frac{d y}{d x}-1=e^{x-y}\) is

1 \(\mathrm{e}^{\mathrm{x}+\mathrm{y}}+\mathrm{x}=\mathrm{c}\)
2 \(\mathrm{e}^{-(\mathrm{x}+\mathrm{y})}+\mathrm{x}=\mathrm{c}\)
3 \(\mathrm{e}^{-(\mathrm{x}+\mathrm{y})}=\mathrm{x}+\mathrm{c}\)
4 \(\mathrm{e}^{-\mathrm{x}+\mathrm{y}}=\mathrm{x}+\mathrm{c}\)
Differential Equation

87239 The solution of the differential equation
\(\left(x^{2}-y x^{2}\right) \frac{d y}{d x}+y^{2}+x y^{2}=0\) is

1 \(\log \left(\frac{x}{y}\right)=\frac{1}{x}+\frac{1}{y}+C\)
2 \(\log \left(\frac{y}{x}\right)=\frac{1}{x}+\frac{1}{y}+C\)
3 \(\log (x y)=\frac{1}{x}+\frac{1}{y}+C\)
4 \(\log (\mathrm{xy})+\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}=\mathrm{C}\)
Differential Equation

87240 Find the differential equation of curves \(\mathbf{y}=\mathbf{A} \mathbf{e}^{\mathbf{x}}+\mathbf{B e}^{-\mathbf{x}}\) for different values of \(A\) and \(B\)

1 \(\frac{d^{2} y}{d x^{2}}-2 y=0\)
2 \(\frac{d^{2} y}{d x^{2}}=y\)
3 \(\frac{d^{2} y}{d x^{2}}=4 y+3\)
4 \(\frac{d^{2} y}{d x^{2}}+y=0\)
Differential Equation

87203 Solution of differential equation
\(\mathbf{x d y} \mathbf{-} \mathbf{y d x}=0\) represents

1 a rectangular hyperbola
2 parabola whose vertex is at origin
3 straight line passing through origin
4 a circle whose centre is origin
Differential Equation

87204 The solution of \(\frac{d y}{d x}-1=e^{x-y}\) is

1 \(\mathrm{e}^{\mathrm{x}+\mathrm{y}}+\mathrm{x}=\mathrm{c}\)
2 \(\mathrm{e}^{-(\mathrm{x}+\mathrm{y})}+\mathrm{x}=\mathrm{c}\)
3 \(\mathrm{e}^{-(\mathrm{x}+\mathrm{y})}=\mathrm{x}+\mathrm{c}\)
4 \(\mathrm{e}^{-\mathrm{x}+\mathrm{y}}=\mathrm{x}+\mathrm{c}\)
Differential Equation

87239 The solution of the differential equation
\(\left(x^{2}-y x^{2}\right) \frac{d y}{d x}+y^{2}+x y^{2}=0\) is

1 \(\log \left(\frac{x}{y}\right)=\frac{1}{x}+\frac{1}{y}+C\)
2 \(\log \left(\frac{y}{x}\right)=\frac{1}{x}+\frac{1}{y}+C\)
3 \(\log (x y)=\frac{1}{x}+\frac{1}{y}+C\)
4 \(\log (\mathrm{xy})+\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}=\mathrm{C}\)
Differential Equation

87240 Find the differential equation of curves \(\mathbf{y}=\mathbf{A} \mathbf{e}^{\mathbf{x}}+\mathbf{B e}^{-\mathbf{x}}\) for different values of \(A\) and \(B\)

1 \(\frac{d^{2} y}{d x^{2}}-2 y=0\)
2 \(\frac{d^{2} y}{d x^{2}}=y\)
3 \(\frac{d^{2} y}{d x^{2}}=4 y+3\)
4 \(\frac{d^{2} y}{d x^{2}}+y=0\)
Differential Equation

87203 Solution of differential equation
\(\mathbf{x d y} \mathbf{-} \mathbf{y d x}=0\) represents

1 a rectangular hyperbola
2 parabola whose vertex is at origin
3 straight line passing through origin
4 a circle whose centre is origin
Differential Equation

87204 The solution of \(\frac{d y}{d x}-1=e^{x-y}\) is

1 \(\mathrm{e}^{\mathrm{x}+\mathrm{y}}+\mathrm{x}=\mathrm{c}\)
2 \(\mathrm{e}^{-(\mathrm{x}+\mathrm{y})}+\mathrm{x}=\mathrm{c}\)
3 \(\mathrm{e}^{-(\mathrm{x}+\mathrm{y})}=\mathrm{x}+\mathrm{c}\)
4 \(\mathrm{e}^{-\mathrm{x}+\mathrm{y}}=\mathrm{x}+\mathrm{c}\)
Differential Equation

87239 The solution of the differential equation
\(\left(x^{2}-y x^{2}\right) \frac{d y}{d x}+y^{2}+x y^{2}=0\) is

1 \(\log \left(\frac{x}{y}\right)=\frac{1}{x}+\frac{1}{y}+C\)
2 \(\log \left(\frac{y}{x}\right)=\frac{1}{x}+\frac{1}{y}+C\)
3 \(\log (x y)=\frac{1}{x}+\frac{1}{y}+C\)
4 \(\log (\mathrm{xy})+\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}=\mathrm{C}\)
Differential Equation

87240 Find the differential equation of curves \(\mathbf{y}=\mathbf{A} \mathbf{e}^{\mathbf{x}}+\mathbf{B e}^{-\mathbf{x}}\) for different values of \(A\) and \(B\)

1 \(\frac{d^{2} y}{d x^{2}}-2 y=0\)
2 \(\frac{d^{2} y}{d x^{2}}=y\)
3 \(\frac{d^{2} y}{d x^{2}}=4 y+3\)
4 \(\frac{d^{2} y}{d x^{2}}+y=0\)
Differential Equation

87203 Solution of differential equation
\(\mathbf{x d y} \mathbf{-} \mathbf{y d x}=0\) represents

1 a rectangular hyperbola
2 parabola whose vertex is at origin
3 straight line passing through origin
4 a circle whose centre is origin
Differential Equation

87204 The solution of \(\frac{d y}{d x}-1=e^{x-y}\) is

1 \(\mathrm{e}^{\mathrm{x}+\mathrm{y}}+\mathrm{x}=\mathrm{c}\)
2 \(\mathrm{e}^{-(\mathrm{x}+\mathrm{y})}+\mathrm{x}=\mathrm{c}\)
3 \(\mathrm{e}^{-(\mathrm{x}+\mathrm{y})}=\mathrm{x}+\mathrm{c}\)
4 \(\mathrm{e}^{-\mathrm{x}+\mathrm{y}}=\mathrm{x}+\mathrm{c}\)
Differential Equation

87239 The solution of the differential equation
\(\left(x^{2}-y x^{2}\right) \frac{d y}{d x}+y^{2}+x y^{2}=0\) is

1 \(\log \left(\frac{x}{y}\right)=\frac{1}{x}+\frac{1}{y}+C\)
2 \(\log \left(\frac{y}{x}\right)=\frac{1}{x}+\frac{1}{y}+C\)
3 \(\log (x y)=\frac{1}{x}+\frac{1}{y}+C\)
4 \(\log (\mathrm{xy})+\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}=\mathrm{C}\)
Differential Equation

87240 Find the differential equation of curves \(\mathbf{y}=\mathbf{A} \mathbf{e}^{\mathbf{x}}+\mathbf{B e}^{-\mathbf{x}}\) for different values of \(A\) and \(B\)

1 \(\frac{d^{2} y}{d x^{2}}-2 y=0\)
2 \(\frac{d^{2} y}{d x^{2}}=y\)
3 \(\frac{d^{2} y}{d x^{2}}=4 y+3\)
4 \(\frac{d^{2} y}{d x^{2}}+y=0\)