Integrating Factor
Differential Equation

87180 The differential equation of all lines making intercept 3 on the \(\mathrm{X}\)-axis is

1 \(x \frac{d y}{d x}=3 y\)
2 \((x-3) \frac{d y}{d x}=y\)
3 \(\frac{d y}{d x}=x-3\)
4 \(\frac{d y}{d x}=x+3\)
Differential Equation

87181 The particular solution of the differential equation \(\log \left(\frac{d y}{d x}\right)=x\), when \(x=0, y=1\), is

1 \(y=-e^{x}+2\)
2 \(y=e^{x}+2\)
3 \(y=e^{x}\)
4 \(y=-e^{x}\)
Differential Equation

87192 The equation of the curve through the point
\((1,0)\) and whose slope is \(\frac{y-1}{x^{2}+x}\) is

1 \((\mathrm{y}-1)(\mathrm{x}+1)+2 \mathrm{x}=0\)
2 \(2 x(y-1)+x+1=0\)
3 \(x(y-1)(x+1)+2=0\)
4 \(y(x+1)-x=0\)
Differential Equation

87193 The solution of the equation \(\frac{d^{2} y}{d^{2}}=e^{-2 x}\) is

1 \(\frac{\mathrm{e}^{-2 \mathrm{x}}}{4}\)
2 \(\frac{e^{-2 x}}{4}+c x+d\)
3 \(\frac{1}{4} \mathrm{e}^{-2 \mathrm{x}}+\mathrm{cx}^{2}+\mathrm{d}\)
4 \(\frac{e^{-4 x}}{4}+c x+d\)
Differential Equation

87194 The differential equation of the family of curves \(x^{2}+y^{2}-2 a y=0\), where \(a\) is an arbitrary constant is

1 \(2\left(x^{2}-y^{2}\right) y^{\prime}=x y\)
2 \(2\left(x^{2}+y^{2}\right) y^{\prime}=x y\)
3 \(\left(x^{2}-y^{2}\right) y^{\prime}=2 x y\)
4 \(\left(x^{2}+y^{2}\right) y^{\prime}=2 x y\)
Differential Equation

87180 The differential equation of all lines making intercept 3 on the \(\mathrm{X}\)-axis is

1 \(x \frac{d y}{d x}=3 y\)
2 \((x-3) \frac{d y}{d x}=y\)
3 \(\frac{d y}{d x}=x-3\)
4 \(\frac{d y}{d x}=x+3\)
Differential Equation

87181 The particular solution of the differential equation \(\log \left(\frac{d y}{d x}\right)=x\), when \(x=0, y=1\), is

1 \(y=-e^{x}+2\)
2 \(y=e^{x}+2\)
3 \(y=e^{x}\)
4 \(y=-e^{x}\)
Differential Equation

87192 The equation of the curve through the point
\((1,0)\) and whose slope is \(\frac{y-1}{x^{2}+x}\) is

1 \((\mathrm{y}-1)(\mathrm{x}+1)+2 \mathrm{x}=0\)
2 \(2 x(y-1)+x+1=0\)
3 \(x(y-1)(x+1)+2=0\)
4 \(y(x+1)-x=0\)
Differential Equation

87193 The solution of the equation \(\frac{d^{2} y}{d^{2}}=e^{-2 x}\) is

1 \(\frac{\mathrm{e}^{-2 \mathrm{x}}}{4}\)
2 \(\frac{e^{-2 x}}{4}+c x+d\)
3 \(\frac{1}{4} \mathrm{e}^{-2 \mathrm{x}}+\mathrm{cx}^{2}+\mathrm{d}\)
4 \(\frac{e^{-4 x}}{4}+c x+d\)
Differential Equation

87194 The differential equation of the family of curves \(x^{2}+y^{2}-2 a y=0\), where \(a\) is an arbitrary constant is

1 \(2\left(x^{2}-y^{2}\right) y^{\prime}=x y\)
2 \(2\left(x^{2}+y^{2}\right) y^{\prime}=x y\)
3 \(\left(x^{2}-y^{2}\right) y^{\prime}=2 x y\)
4 \(\left(x^{2}+y^{2}\right) y^{\prime}=2 x y\)
Differential Equation

87180 The differential equation of all lines making intercept 3 on the \(\mathrm{X}\)-axis is

1 \(x \frac{d y}{d x}=3 y\)
2 \((x-3) \frac{d y}{d x}=y\)
3 \(\frac{d y}{d x}=x-3\)
4 \(\frac{d y}{d x}=x+3\)
Differential Equation

87181 The particular solution of the differential equation \(\log \left(\frac{d y}{d x}\right)=x\), when \(x=0, y=1\), is

1 \(y=-e^{x}+2\)
2 \(y=e^{x}+2\)
3 \(y=e^{x}\)
4 \(y=-e^{x}\)
Differential Equation

87192 The equation of the curve through the point
\((1,0)\) and whose slope is \(\frac{y-1}{x^{2}+x}\) is

1 \((\mathrm{y}-1)(\mathrm{x}+1)+2 \mathrm{x}=0\)
2 \(2 x(y-1)+x+1=0\)
3 \(x(y-1)(x+1)+2=0\)
4 \(y(x+1)-x=0\)
Differential Equation

87193 The solution of the equation \(\frac{d^{2} y}{d^{2}}=e^{-2 x}\) is

1 \(\frac{\mathrm{e}^{-2 \mathrm{x}}}{4}\)
2 \(\frac{e^{-2 x}}{4}+c x+d\)
3 \(\frac{1}{4} \mathrm{e}^{-2 \mathrm{x}}+\mathrm{cx}^{2}+\mathrm{d}\)
4 \(\frac{e^{-4 x}}{4}+c x+d\)
Differential Equation

87194 The differential equation of the family of curves \(x^{2}+y^{2}-2 a y=0\), where \(a\) is an arbitrary constant is

1 \(2\left(x^{2}-y^{2}\right) y^{\prime}=x y\)
2 \(2\left(x^{2}+y^{2}\right) y^{\prime}=x y\)
3 \(\left(x^{2}-y^{2}\right) y^{\prime}=2 x y\)
4 \(\left(x^{2}+y^{2}\right) y^{\prime}=2 x y\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Differential Equation

87180 The differential equation of all lines making intercept 3 on the \(\mathrm{X}\)-axis is

1 \(x \frac{d y}{d x}=3 y\)
2 \((x-3) \frac{d y}{d x}=y\)
3 \(\frac{d y}{d x}=x-3\)
4 \(\frac{d y}{d x}=x+3\)
Differential Equation

87181 The particular solution of the differential equation \(\log \left(\frac{d y}{d x}\right)=x\), when \(x=0, y=1\), is

1 \(y=-e^{x}+2\)
2 \(y=e^{x}+2\)
3 \(y=e^{x}\)
4 \(y=-e^{x}\)
Differential Equation

87192 The equation of the curve through the point
\((1,0)\) and whose slope is \(\frac{y-1}{x^{2}+x}\) is

1 \((\mathrm{y}-1)(\mathrm{x}+1)+2 \mathrm{x}=0\)
2 \(2 x(y-1)+x+1=0\)
3 \(x(y-1)(x+1)+2=0\)
4 \(y(x+1)-x=0\)
Differential Equation

87193 The solution of the equation \(\frac{d^{2} y}{d^{2}}=e^{-2 x}\) is

1 \(\frac{\mathrm{e}^{-2 \mathrm{x}}}{4}\)
2 \(\frac{e^{-2 x}}{4}+c x+d\)
3 \(\frac{1}{4} \mathrm{e}^{-2 \mathrm{x}}+\mathrm{cx}^{2}+\mathrm{d}\)
4 \(\frac{e^{-4 x}}{4}+c x+d\)
Differential Equation

87194 The differential equation of the family of curves \(x^{2}+y^{2}-2 a y=0\), where \(a\) is an arbitrary constant is

1 \(2\left(x^{2}-y^{2}\right) y^{\prime}=x y\)
2 \(2\left(x^{2}+y^{2}\right) y^{\prime}=x y\)
3 \(\left(x^{2}-y^{2}\right) y^{\prime}=2 x y\)
4 \(\left(x^{2}+y^{2}\right) y^{\prime}=2 x y\)
Differential Equation

87180 The differential equation of all lines making intercept 3 on the \(\mathrm{X}\)-axis is

1 \(x \frac{d y}{d x}=3 y\)
2 \((x-3) \frac{d y}{d x}=y\)
3 \(\frac{d y}{d x}=x-3\)
4 \(\frac{d y}{d x}=x+3\)
Differential Equation

87181 The particular solution of the differential equation \(\log \left(\frac{d y}{d x}\right)=x\), when \(x=0, y=1\), is

1 \(y=-e^{x}+2\)
2 \(y=e^{x}+2\)
3 \(y=e^{x}\)
4 \(y=-e^{x}\)
Differential Equation

87192 The equation of the curve through the point
\((1,0)\) and whose slope is \(\frac{y-1}{x^{2}+x}\) is

1 \((\mathrm{y}-1)(\mathrm{x}+1)+2 \mathrm{x}=0\)
2 \(2 x(y-1)+x+1=0\)
3 \(x(y-1)(x+1)+2=0\)
4 \(y(x+1)-x=0\)
Differential Equation

87193 The solution of the equation \(\frac{d^{2} y}{d^{2}}=e^{-2 x}\) is

1 \(\frac{\mathrm{e}^{-2 \mathrm{x}}}{4}\)
2 \(\frac{e^{-2 x}}{4}+c x+d\)
3 \(\frac{1}{4} \mathrm{e}^{-2 \mathrm{x}}+\mathrm{cx}^{2}+\mathrm{d}\)
4 \(\frac{e^{-4 x}}{4}+c x+d\)
Differential Equation

87194 The differential equation of the family of curves \(x^{2}+y^{2}-2 a y=0\), where \(a\) is an arbitrary constant is

1 \(2\left(x^{2}-y^{2}\right) y^{\prime}=x y\)
2 \(2\left(x^{2}+y^{2}\right) y^{\prime}=x y\)
3 \(\left(x^{2}-y^{2}\right) y^{\prime}=2 x y\)
4 \(\left(x^{2}+y^{2}\right) y^{\prime}=2 x y\)