Integrating Factor
Differential Equation

87184 Differential equation of all the circles whose centers lie on \(\mathrm{X}\)-axis is

1 \(y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}+1=0\)
2 \(y\left(\frac{d y}{d x}\right)^{2}-2 y+1=0\)
3 \(y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)=0\)
4 \(y \frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)^{2}-1=0\)
Differential Equation

87185 \(y=a \sin (\log x)+b \cos (\log x)\), then the differential equation without the parameter ' \(a\) ' \& ' \(b\) ' is

1 \(\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+x^{2} y=0\)
2 \(x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=0\)
3 \(x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0\)
4 \(\mathrm{x}^{2} \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}-\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}-\mathrm{y}=0\)
Differential Equation

87186 Solution of the differential equation
\(\left(1+y^{2}\right) \tan ^{-1} x d x+\left(1+x^{2}\right) 2 y d y=0\) is

1 \(\left|1+\mathrm{x}^{2}\right|\left|1+\mathrm{e}^{2 \mathrm{y}}\right|=\mathrm{c}\)
2 \(\left(\tan ^{-1} \mathrm{x}\right)^{2}+2 \log \left|1+\mathrm{y}^{2}\right|=\mathrm{c}\)
3 \(\tan ^{-1} \mathrm{x}+\log \left|1+\mathrm{y}^{2}\right|=\mathrm{c}\)
4 \(1 / 2\left(\tan ^{-1} \mathrm{x}\right)^{2}+2 \log \left|1+\mathrm{y}^{2}\right|=\mathrm{c}\)
Differential Equation

87187 If \(y=\left(\tan ^{-1} x\right)^{2}\), then \(\frac{d^{2} y}{d x^{2}}\left(1+x^{2}\right)^{2}+2 x\left(x^{2}+1\right)\)
\(\underline{\mathbf{d y}}=\)

1 3
2 2
3 \(\log \left(\frac{1+\mathrm{x}^{2}}{\mathrm{x}}\right)\)
4 \(\log \left(\frac{\mathrm{y}-\mathrm{x}^{2}}{\tan \mathrm{x}}\right)\)
Differential Equation

87188 The solution of the differential equation
\(\frac{\mathbf{d y}}{\mathbf{d x}}=3^{x+y} \text { at } x=y=0 \text { is }\)

1 \(3^{\mathrm{x}}+3^{-\mathrm{y}}-2=0\)
2 \(3^{\mathrm{x}}-3^{-\mathrm{y}}-2=0\)
3 \(3^{\mathrm{x}}+3^{-\mathrm{y}}+\mathrm{c}=0\)
4 \(3^{\mathrm{x}}+3^{-\mathrm{y}}-\mathrm{c}=0\)
Differential Equation

87184 Differential equation of all the circles whose centers lie on \(\mathrm{X}\)-axis is

1 \(y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}+1=0\)
2 \(y\left(\frac{d y}{d x}\right)^{2}-2 y+1=0\)
3 \(y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)=0\)
4 \(y \frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)^{2}-1=0\)
Differential Equation

87185 \(y=a \sin (\log x)+b \cos (\log x)\), then the differential equation without the parameter ' \(a\) ' \& ' \(b\) ' is

1 \(\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+x^{2} y=0\)
2 \(x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=0\)
3 \(x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0\)
4 \(\mathrm{x}^{2} \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}-\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}-\mathrm{y}=0\)
Differential Equation

87186 Solution of the differential equation
\(\left(1+y^{2}\right) \tan ^{-1} x d x+\left(1+x^{2}\right) 2 y d y=0\) is

1 \(\left|1+\mathrm{x}^{2}\right|\left|1+\mathrm{e}^{2 \mathrm{y}}\right|=\mathrm{c}\)
2 \(\left(\tan ^{-1} \mathrm{x}\right)^{2}+2 \log \left|1+\mathrm{y}^{2}\right|=\mathrm{c}\)
3 \(\tan ^{-1} \mathrm{x}+\log \left|1+\mathrm{y}^{2}\right|=\mathrm{c}\)
4 \(1 / 2\left(\tan ^{-1} \mathrm{x}\right)^{2}+2 \log \left|1+\mathrm{y}^{2}\right|=\mathrm{c}\)
Differential Equation

87187 If \(y=\left(\tan ^{-1} x\right)^{2}\), then \(\frac{d^{2} y}{d x^{2}}\left(1+x^{2}\right)^{2}+2 x\left(x^{2}+1\right)\)
\(\underline{\mathbf{d y}}=\)

1 3
2 2
3 \(\log \left(\frac{1+\mathrm{x}^{2}}{\mathrm{x}}\right)\)
4 \(\log \left(\frac{\mathrm{y}-\mathrm{x}^{2}}{\tan \mathrm{x}}\right)\)
Differential Equation

87188 The solution of the differential equation
\(\frac{\mathbf{d y}}{\mathbf{d x}}=3^{x+y} \text { at } x=y=0 \text { is }\)

1 \(3^{\mathrm{x}}+3^{-\mathrm{y}}-2=0\)
2 \(3^{\mathrm{x}}-3^{-\mathrm{y}}-2=0\)
3 \(3^{\mathrm{x}}+3^{-\mathrm{y}}+\mathrm{c}=0\)
4 \(3^{\mathrm{x}}+3^{-\mathrm{y}}-\mathrm{c}=0\)
Differential Equation

87184 Differential equation of all the circles whose centers lie on \(\mathrm{X}\)-axis is

1 \(y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}+1=0\)
2 \(y\left(\frac{d y}{d x}\right)^{2}-2 y+1=0\)
3 \(y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)=0\)
4 \(y \frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)^{2}-1=0\)
Differential Equation

87185 \(y=a \sin (\log x)+b \cos (\log x)\), then the differential equation without the parameter ' \(a\) ' \& ' \(b\) ' is

1 \(\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+x^{2} y=0\)
2 \(x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=0\)
3 \(x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0\)
4 \(\mathrm{x}^{2} \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}-\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}-\mathrm{y}=0\)
Differential Equation

87186 Solution of the differential equation
\(\left(1+y^{2}\right) \tan ^{-1} x d x+\left(1+x^{2}\right) 2 y d y=0\) is

1 \(\left|1+\mathrm{x}^{2}\right|\left|1+\mathrm{e}^{2 \mathrm{y}}\right|=\mathrm{c}\)
2 \(\left(\tan ^{-1} \mathrm{x}\right)^{2}+2 \log \left|1+\mathrm{y}^{2}\right|=\mathrm{c}\)
3 \(\tan ^{-1} \mathrm{x}+\log \left|1+\mathrm{y}^{2}\right|=\mathrm{c}\)
4 \(1 / 2\left(\tan ^{-1} \mathrm{x}\right)^{2}+2 \log \left|1+\mathrm{y}^{2}\right|=\mathrm{c}\)
Differential Equation

87187 If \(y=\left(\tan ^{-1} x\right)^{2}\), then \(\frac{d^{2} y}{d x^{2}}\left(1+x^{2}\right)^{2}+2 x\left(x^{2}+1\right)\)
\(\underline{\mathbf{d y}}=\)

1 3
2 2
3 \(\log \left(\frac{1+\mathrm{x}^{2}}{\mathrm{x}}\right)\)
4 \(\log \left(\frac{\mathrm{y}-\mathrm{x}^{2}}{\tan \mathrm{x}}\right)\)
Differential Equation

87188 The solution of the differential equation
\(\frac{\mathbf{d y}}{\mathbf{d x}}=3^{x+y} \text { at } x=y=0 \text { is }\)

1 \(3^{\mathrm{x}}+3^{-\mathrm{y}}-2=0\)
2 \(3^{\mathrm{x}}-3^{-\mathrm{y}}-2=0\)
3 \(3^{\mathrm{x}}+3^{-\mathrm{y}}+\mathrm{c}=0\)
4 \(3^{\mathrm{x}}+3^{-\mathrm{y}}-\mathrm{c}=0\)
Differential Equation

87184 Differential equation of all the circles whose centers lie on \(\mathrm{X}\)-axis is

1 \(y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}+1=0\)
2 \(y\left(\frac{d y}{d x}\right)^{2}-2 y+1=0\)
3 \(y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)=0\)
4 \(y \frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)^{2}-1=0\)
Differential Equation

87185 \(y=a \sin (\log x)+b \cos (\log x)\), then the differential equation without the parameter ' \(a\) ' \& ' \(b\) ' is

1 \(\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+x^{2} y=0\)
2 \(x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=0\)
3 \(x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0\)
4 \(\mathrm{x}^{2} \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}-\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}-\mathrm{y}=0\)
Differential Equation

87186 Solution of the differential equation
\(\left(1+y^{2}\right) \tan ^{-1} x d x+\left(1+x^{2}\right) 2 y d y=0\) is

1 \(\left|1+\mathrm{x}^{2}\right|\left|1+\mathrm{e}^{2 \mathrm{y}}\right|=\mathrm{c}\)
2 \(\left(\tan ^{-1} \mathrm{x}\right)^{2}+2 \log \left|1+\mathrm{y}^{2}\right|=\mathrm{c}\)
3 \(\tan ^{-1} \mathrm{x}+\log \left|1+\mathrm{y}^{2}\right|=\mathrm{c}\)
4 \(1 / 2\left(\tan ^{-1} \mathrm{x}\right)^{2}+2 \log \left|1+\mathrm{y}^{2}\right|=\mathrm{c}\)
Differential Equation

87187 If \(y=\left(\tan ^{-1} x\right)^{2}\), then \(\frac{d^{2} y}{d x^{2}}\left(1+x^{2}\right)^{2}+2 x\left(x^{2}+1\right)\)
\(\underline{\mathbf{d y}}=\)

1 3
2 2
3 \(\log \left(\frac{1+\mathrm{x}^{2}}{\mathrm{x}}\right)\)
4 \(\log \left(\frac{\mathrm{y}-\mathrm{x}^{2}}{\tan \mathrm{x}}\right)\)
Differential Equation

87188 The solution of the differential equation
\(\frac{\mathbf{d y}}{\mathbf{d x}}=3^{x+y} \text { at } x=y=0 \text { is }\)

1 \(3^{\mathrm{x}}+3^{-\mathrm{y}}-2=0\)
2 \(3^{\mathrm{x}}-3^{-\mathrm{y}}-2=0\)
3 \(3^{\mathrm{x}}+3^{-\mathrm{y}}+\mathrm{c}=0\)
4 \(3^{\mathrm{x}}+3^{-\mathrm{y}}-\mathrm{c}=0\)
Differential Equation

87184 Differential equation of all the circles whose centers lie on \(\mathrm{X}\)-axis is

1 \(y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}+1=0\)
2 \(y\left(\frac{d y}{d x}\right)^{2}-2 y+1=0\)
3 \(y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)=0\)
4 \(y \frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)^{2}-1=0\)
Differential Equation

87185 \(y=a \sin (\log x)+b \cos (\log x)\), then the differential equation without the parameter ' \(a\) ' \& ' \(b\) ' is

1 \(\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+x^{2} y=0\)
2 \(x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=0\)
3 \(x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0\)
4 \(\mathrm{x}^{2} \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}-\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}-\mathrm{y}=0\)
Differential Equation

87186 Solution of the differential equation
\(\left(1+y^{2}\right) \tan ^{-1} x d x+\left(1+x^{2}\right) 2 y d y=0\) is

1 \(\left|1+\mathrm{x}^{2}\right|\left|1+\mathrm{e}^{2 \mathrm{y}}\right|=\mathrm{c}\)
2 \(\left(\tan ^{-1} \mathrm{x}\right)^{2}+2 \log \left|1+\mathrm{y}^{2}\right|=\mathrm{c}\)
3 \(\tan ^{-1} \mathrm{x}+\log \left|1+\mathrm{y}^{2}\right|=\mathrm{c}\)
4 \(1 / 2\left(\tan ^{-1} \mathrm{x}\right)^{2}+2 \log \left|1+\mathrm{y}^{2}\right|=\mathrm{c}\)
Differential Equation

87187 If \(y=\left(\tan ^{-1} x\right)^{2}\), then \(\frac{d^{2} y}{d x^{2}}\left(1+x^{2}\right)^{2}+2 x\left(x^{2}+1\right)\)
\(\underline{\mathbf{d y}}=\)

1 3
2 2
3 \(\log \left(\frac{1+\mathrm{x}^{2}}{\mathrm{x}}\right)\)
4 \(\log \left(\frac{\mathrm{y}-\mathrm{x}^{2}}{\tan \mathrm{x}}\right)\)
Differential Equation

87188 The solution of the differential equation
\(\frac{\mathbf{d y}}{\mathbf{d x}}=3^{x+y} \text { at } x=y=0 \text { is }\)

1 \(3^{\mathrm{x}}+3^{-\mathrm{y}}-2=0\)
2 \(3^{\mathrm{x}}-3^{-\mathrm{y}}-2=0\)
3 \(3^{\mathrm{x}}+3^{-\mathrm{y}}+\mathrm{c}=0\)
4 \(3^{\mathrm{x}}+3^{-\mathrm{y}}-\mathrm{c}=0\)