(B) : Given that, the circle having their centre lie on \(y=8\) and touching the \(x\)-axis. Thus, equation of circle is, \((x-h)^{2}+(y-8)^{2}=8^{2} \tag{i}\) Differentiating w.r.t \(\mathrm{x}\), we get- \(2(\mathrm{x}-\mathrm{h})+2(\mathrm{y}-8) \frac{\mathrm{dy}}{\mathrm{dx}}=0 \Rightarrow(\mathrm{x}-\mathrm{h})=-(\mathrm{y}-8) \frac{\mathrm{dy}}{\mathrm{dx}}\) Squaring both side, we get- \((\mathrm{x}-\mathrm{h})^{2}=(\mathrm{y}-8)^{2}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}\) Putting value in equation (i), we get- \((y-8)^{2}\left(\frac{d y}{d x}\right)^{2}+(y-8)^{2}=64 \Rightarrow(y-8)^{2}\left(1+\left(\frac{d y}{d x}\right)^{2}\right)=64\)
(B) : Given that, the circle having their centre lie on \(y=8\) and touching the \(x\)-axis. Thus, equation of circle is, \((x-h)^{2}+(y-8)^{2}=8^{2} \tag{i}\) Differentiating w.r.t \(\mathrm{x}\), we get- \(2(\mathrm{x}-\mathrm{h})+2(\mathrm{y}-8) \frac{\mathrm{dy}}{\mathrm{dx}}=0 \Rightarrow(\mathrm{x}-\mathrm{h})=-(\mathrm{y}-8) \frac{\mathrm{dy}}{\mathrm{dx}}\) Squaring both side, we get- \((\mathrm{x}-\mathrm{h})^{2}=(\mathrm{y}-8)^{2}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}\) Putting value in equation (i), we get- \((y-8)^{2}\left(\frac{d y}{d x}\right)^{2}+(y-8)^{2}=64 \Rightarrow(y-8)^{2}\left(1+\left(\frac{d y}{d x}\right)^{2}\right)=64\)
(B) : Given that, the circle having their centre lie on \(y=8\) and touching the \(x\)-axis. Thus, equation of circle is, \((x-h)^{2}+(y-8)^{2}=8^{2} \tag{i}\) Differentiating w.r.t \(\mathrm{x}\), we get- \(2(\mathrm{x}-\mathrm{h})+2(\mathrm{y}-8) \frac{\mathrm{dy}}{\mathrm{dx}}=0 \Rightarrow(\mathrm{x}-\mathrm{h})=-(\mathrm{y}-8) \frac{\mathrm{dy}}{\mathrm{dx}}\) Squaring both side, we get- \((\mathrm{x}-\mathrm{h})^{2}=(\mathrm{y}-8)^{2}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}\) Putting value in equation (i), we get- \((y-8)^{2}\left(\frac{d y}{d x}\right)^{2}+(y-8)^{2}=64 \Rightarrow(y-8)^{2}\left(1+\left(\frac{d y}{d x}\right)^{2}\right)=64\)
(B) : Given that, the circle having their centre lie on \(y=8\) and touching the \(x\)-axis. Thus, equation of circle is, \((x-h)^{2}+(y-8)^{2}=8^{2} \tag{i}\) Differentiating w.r.t \(\mathrm{x}\), we get- \(2(\mathrm{x}-\mathrm{h})+2(\mathrm{y}-8) \frac{\mathrm{dy}}{\mathrm{dx}}=0 \Rightarrow(\mathrm{x}-\mathrm{h})=-(\mathrm{y}-8) \frac{\mathrm{dy}}{\mathrm{dx}}\) Squaring both side, we get- \((\mathrm{x}-\mathrm{h})^{2}=(\mathrm{y}-8)^{2}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}\) Putting value in equation (i), we get- \((y-8)^{2}\left(\frac{d y}{d x}\right)^{2}+(y-8)^{2}=64 \Rightarrow(y-8)^{2}\left(1+\left(\frac{d y}{d x}\right)^{2}\right)=64\)