Integrating Factor
Differential Equation

87283 The solution of \(\frac{d y}{d x}+\frac{1}{3} y=1\) is

1 \(y=3+c e^{x / 3}\)
2 \(y=3+c e^{-x / 3}\)
3 \(3 y=c+e^{x / 3}\)
4 \(\mathrm{y}^{2}+\mathrm{x}+\mathrm{x}^{2}+2=\mathrm{ce}^{2 \mathrm{x}}\)
Differential Equation

87172 The solution for the differential equation

\(\frac{dy}{y} + \frac{dx}{x} = 0\) is

1 \(\frac{1}{y} + \frac{1}{x} = c\)
2 \(\log x \cdot \log y = c\)
3 \(xy = c\)
4 \(x + y = c\)
Ans. (c)
Exp: (C) : We have differential equation,
\(\sqrt{1-x^{2} y^{2}} d x=y d x+x d y \Rightarrow \sqrt{1-(x y)^{2}} d x=d(x y)\)
\(\mathrm{dx}=\frac{\mathrm{d}(\mathrm{xy})}{\sqrt{1-(\mathrm{xy})^{2}}}\)
Let, \(\quad \begin{array}{ll}x y=t \\ d(x y)=d t\end{array}\)
Integrating on both sides,
\(\int d x=\frac{d t}{\sqrt{1-t^{2}}} \Rightarrow x=\sin ^{-1} t+c\)
\(x=\sin ^{-1}(x y)+c \Rightarrow(x+c)=\sin ^{-1}(x y)\)
\(\sin (x+c)=x y\)
Differential Equation

87182 The general solution of the differential equation of all circles having centre at \(A(-1,2)\) is

1 \(x^{2}+y^{2}-x+2 y+c=0\)
2 \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{x}-2 \mathrm{y}+\mathrm{c}=0\)
3 \(x^{2}+y^{2}-2 x+4 y+c=0\)
4 \(\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{x}-4 \mathrm{y}+\mathrm{c}=0\)
Differential Equation

87183 The particular solution of the differential
equation \(x d y+2 y d x=0\), when \(x=2, y=1\) is

1 \(x y=4\)
2 \(x^{2} y=4\)
3 \(x y^{2}=4\)
4 \(x^{2} y^{2}=4\)
Differential Equation

87283 The solution of \(\frac{d y}{d x}+\frac{1}{3} y=1\) is

1 \(y=3+c e^{x / 3}\)
2 \(y=3+c e^{-x / 3}\)
3 \(3 y=c+e^{x / 3}\)
4 \(\mathrm{y}^{2}+\mathrm{x}+\mathrm{x}^{2}+2=\mathrm{ce}^{2 \mathrm{x}}\)
Differential Equation

87172 The solution for the differential equation

\(\frac{dy}{y} + \frac{dx}{x} = 0\) is

1 \(\frac{1}{y} + \frac{1}{x} = c\)
2 \(\log x \cdot \log y = c\)
3 \(xy = c\)
4 \(x + y = c\)
Ans. (c)
Exp: (C) : We have differential equation,
\(\sqrt{1-x^{2} y^{2}} d x=y d x+x d y \Rightarrow \sqrt{1-(x y)^{2}} d x=d(x y)\)
\(\mathrm{dx}=\frac{\mathrm{d}(\mathrm{xy})}{\sqrt{1-(\mathrm{xy})^{2}}}\)
Let, \(\quad \begin{array}{ll}x y=t \\ d(x y)=d t\end{array}\)
Integrating on both sides,
\(\int d x=\frac{d t}{\sqrt{1-t^{2}}} \Rightarrow x=\sin ^{-1} t+c\)
\(x=\sin ^{-1}(x y)+c \Rightarrow(x+c)=\sin ^{-1}(x y)\)
\(\sin (x+c)=x y\)
Differential Equation

87182 The general solution of the differential equation of all circles having centre at \(A(-1,2)\) is

1 \(x^{2}+y^{2}-x+2 y+c=0\)
2 \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{x}-2 \mathrm{y}+\mathrm{c}=0\)
3 \(x^{2}+y^{2}-2 x+4 y+c=0\)
4 \(\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{x}-4 \mathrm{y}+\mathrm{c}=0\)
Differential Equation

87183 The particular solution of the differential
equation \(x d y+2 y d x=0\), when \(x=2, y=1\) is

1 \(x y=4\)
2 \(x^{2} y=4\)
3 \(x y^{2}=4\)
4 \(x^{2} y^{2}=4\)
Differential Equation

87283 The solution of \(\frac{d y}{d x}+\frac{1}{3} y=1\) is

1 \(y=3+c e^{x / 3}\)
2 \(y=3+c e^{-x / 3}\)
3 \(3 y=c+e^{x / 3}\)
4 \(\mathrm{y}^{2}+\mathrm{x}+\mathrm{x}^{2}+2=\mathrm{ce}^{2 \mathrm{x}}\)
Differential Equation

87172 The solution for the differential equation

\(\frac{dy}{y} + \frac{dx}{x} = 0\) is

1 \(\frac{1}{y} + \frac{1}{x} = c\)
2 \(\log x \cdot \log y = c\)
3 \(xy = c\)
4 \(x + y = c\)
Ans. (c)
Exp: (C) : We have differential equation,
\(\sqrt{1-x^{2} y^{2}} d x=y d x+x d y \Rightarrow \sqrt{1-(x y)^{2}} d x=d(x y)\)
\(\mathrm{dx}=\frac{\mathrm{d}(\mathrm{xy})}{\sqrt{1-(\mathrm{xy})^{2}}}\)
Let, \(\quad \begin{array}{ll}x y=t \\ d(x y)=d t\end{array}\)
Integrating on both sides,
\(\int d x=\frac{d t}{\sqrt{1-t^{2}}} \Rightarrow x=\sin ^{-1} t+c\)
\(x=\sin ^{-1}(x y)+c \Rightarrow(x+c)=\sin ^{-1}(x y)\)
\(\sin (x+c)=x y\)
Differential Equation

87182 The general solution of the differential equation of all circles having centre at \(A(-1,2)\) is

1 \(x^{2}+y^{2}-x+2 y+c=0\)
2 \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{x}-2 \mathrm{y}+\mathrm{c}=0\)
3 \(x^{2}+y^{2}-2 x+4 y+c=0\)
4 \(\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{x}-4 \mathrm{y}+\mathrm{c}=0\)
Differential Equation

87183 The particular solution of the differential
equation \(x d y+2 y d x=0\), when \(x=2, y=1\) is

1 \(x y=4\)
2 \(x^{2} y=4\)
3 \(x y^{2}=4\)
4 \(x^{2} y^{2}=4\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Differential Equation

87283 The solution of \(\frac{d y}{d x}+\frac{1}{3} y=1\) is

1 \(y=3+c e^{x / 3}\)
2 \(y=3+c e^{-x / 3}\)
3 \(3 y=c+e^{x / 3}\)
4 \(\mathrm{y}^{2}+\mathrm{x}+\mathrm{x}^{2}+2=\mathrm{ce}^{2 \mathrm{x}}\)
Differential Equation

87172 The solution for the differential equation

\(\frac{dy}{y} + \frac{dx}{x} = 0\) is

1 \(\frac{1}{y} + \frac{1}{x} = c\)
2 \(\log x \cdot \log y = c\)
3 \(xy = c\)
4 \(x + y = c\)
Ans. (c)
Exp: (C) : We have differential equation,
\(\sqrt{1-x^{2} y^{2}} d x=y d x+x d y \Rightarrow \sqrt{1-(x y)^{2}} d x=d(x y)\)
\(\mathrm{dx}=\frac{\mathrm{d}(\mathrm{xy})}{\sqrt{1-(\mathrm{xy})^{2}}}\)
Let, \(\quad \begin{array}{ll}x y=t \\ d(x y)=d t\end{array}\)
Integrating on both sides,
\(\int d x=\frac{d t}{\sqrt{1-t^{2}}} \Rightarrow x=\sin ^{-1} t+c\)
\(x=\sin ^{-1}(x y)+c \Rightarrow(x+c)=\sin ^{-1}(x y)\)
\(\sin (x+c)=x y\)
Differential Equation

87182 The general solution of the differential equation of all circles having centre at \(A(-1,2)\) is

1 \(x^{2}+y^{2}-x+2 y+c=0\)
2 \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{x}-2 \mathrm{y}+\mathrm{c}=0\)
3 \(x^{2}+y^{2}-2 x+4 y+c=0\)
4 \(\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{x}-4 \mathrm{y}+\mathrm{c}=0\)
Differential Equation

87183 The particular solution of the differential
equation \(x d y+2 y d x=0\), when \(x=2, y=1\) is

1 \(x y=4\)
2 \(x^{2} y=4\)
3 \(x y^{2}=4\)
4 \(x^{2} y^{2}=4\)