Integrating Factor
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Differential Equation

87189 The differential equation of all parabolas whose axes are parallel to the axis of \(y\), is

1 \(\frac{d^{3} y}{d x^{3}}=1\)
2 \(\frac{d^{3} y}{d x^{3}}=-1\)
3 \(\frac{d^{3} y}{d x^{3}}=0\)
4 none of these
Differential Equation

87168 If \(\frac{d y}{d x}+\frac{2^{x-y}\left(2^{y}-1\right)}{2^{x}-1}=0, x, y>0 y(1)=1\), then \(y(2)\) is equal to :

1 \(2+\log _{2} 3\)
2 \(2+\log _{2} 2\)
3 \(2-\log _{2} 2\)
4 \(2-\log _{2} 3\)
Differential Equation

87169 The general solution of the differential equation \(x^{2} d y-2 x y d x=x^{4} \cos x d x\) is

1 \(y=x^{2} \sin x+c\)
2 \(y=\sin x+c x^{2}\)
3 \(y=\cos x+c x^{2}\)
4 \(y=x^{2} \sin x+c x^{2}\)
Differential Equation

87170 The solution for the differential equation \(\frac{d y}{y}+\frac{d x}{x}=0\) is

1 \(\frac{1}{y}+\frac{1}{x}=c\)
2 \(\log \mathrm{x} \cdot \log \mathrm{y}=\mathrm{c}\)
3 \(x y=c\)
4 \(x+y=c\)
Differential Equation

87189 The differential equation of all parabolas whose axes are parallel to the axis of \(y\), is

1 \(\frac{d^{3} y}{d x^{3}}=1\)
2 \(\frac{d^{3} y}{d x^{3}}=-1\)
3 \(\frac{d^{3} y}{d x^{3}}=0\)
4 none of these
Differential Equation

87168 If \(\frac{d y}{d x}+\frac{2^{x-y}\left(2^{y}-1\right)}{2^{x}-1}=0, x, y>0 y(1)=1\), then \(y(2)\) is equal to :

1 \(2+\log _{2} 3\)
2 \(2+\log _{2} 2\)
3 \(2-\log _{2} 2\)
4 \(2-\log _{2} 3\)
Differential Equation

87169 The general solution of the differential equation \(x^{2} d y-2 x y d x=x^{4} \cos x d x\) is

1 \(y=x^{2} \sin x+c\)
2 \(y=\sin x+c x^{2}\)
3 \(y=\cos x+c x^{2}\)
4 \(y=x^{2} \sin x+c x^{2}\)
Differential Equation

87170 The solution for the differential equation \(\frac{d y}{y}+\frac{d x}{x}=0\) is

1 \(\frac{1}{y}+\frac{1}{x}=c\)
2 \(\log \mathrm{x} \cdot \log \mathrm{y}=\mathrm{c}\)
3 \(x y=c\)
4 \(x+y=c\)
Differential Equation

87189 The differential equation of all parabolas whose axes are parallel to the axis of \(y\), is

1 \(\frac{d^{3} y}{d x^{3}}=1\)
2 \(\frac{d^{3} y}{d x^{3}}=-1\)
3 \(\frac{d^{3} y}{d x^{3}}=0\)
4 none of these
Differential Equation

87168 If \(\frac{d y}{d x}+\frac{2^{x-y}\left(2^{y}-1\right)}{2^{x}-1}=0, x, y>0 y(1)=1\), then \(y(2)\) is equal to :

1 \(2+\log _{2} 3\)
2 \(2+\log _{2} 2\)
3 \(2-\log _{2} 2\)
4 \(2-\log _{2} 3\)
Differential Equation

87169 The general solution of the differential equation \(x^{2} d y-2 x y d x=x^{4} \cos x d x\) is

1 \(y=x^{2} \sin x+c\)
2 \(y=\sin x+c x^{2}\)
3 \(y=\cos x+c x^{2}\)
4 \(y=x^{2} \sin x+c x^{2}\)
Differential Equation

87170 The solution for the differential equation \(\frac{d y}{y}+\frac{d x}{x}=0\) is

1 \(\frac{1}{y}+\frac{1}{x}=c\)
2 \(\log \mathrm{x} \cdot \log \mathrm{y}=\mathrm{c}\)
3 \(x y=c\)
4 \(x+y=c\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Differential Equation

87189 The differential equation of all parabolas whose axes are parallel to the axis of \(y\), is

1 \(\frac{d^{3} y}{d x^{3}}=1\)
2 \(\frac{d^{3} y}{d x^{3}}=-1\)
3 \(\frac{d^{3} y}{d x^{3}}=0\)
4 none of these
Differential Equation

87168 If \(\frac{d y}{d x}+\frac{2^{x-y}\left(2^{y}-1\right)}{2^{x}-1}=0, x, y>0 y(1)=1\), then \(y(2)\) is equal to :

1 \(2+\log _{2} 3\)
2 \(2+\log _{2} 2\)
3 \(2-\log _{2} 2\)
4 \(2-\log _{2} 3\)
Differential Equation

87169 The general solution of the differential equation \(x^{2} d y-2 x y d x=x^{4} \cos x d x\) is

1 \(y=x^{2} \sin x+c\)
2 \(y=\sin x+c x^{2}\)
3 \(y=\cos x+c x^{2}\)
4 \(y=x^{2} \sin x+c x^{2}\)
Differential Equation

87170 The solution for the differential equation \(\frac{d y}{y}+\frac{d x}{x}=0\) is

1 \(\frac{1}{y}+\frac{1}{x}=c\)
2 \(\log \mathrm{x} \cdot \log \mathrm{y}=\mathrm{c}\)
3 \(x y=c\)
4 \(x+y=c\)