Integrating Factor
Differential Equation

87323 The general solution of the differential equation \(\left(1+e^{\frac{x}{y}}\right) d x+\left(1-\frac{x}{y}\right) e^{x / y} d y=0\) is \(\quad\) (c is an arbitrary constant)

1 \(x-y e^{\frac{x}{y}}=c\)
2 \(y-x e^{\frac{x}{y}}=c\)
3 \(x y^{\frac{x}{y}} c\)
4 \(y+x e^{\frac{x}{y}}=c\)
Differential Equation

87324 General solution of \((x+y)^{2} \frac{d y}{d x}=a^{2}, a \neq 0\) is ( \(C\) is an arbitrary constant)

1 \(\frac{x}{a}=\tan \frac{y}{a}+c\)
2 \(\tan x y=c\)
3 \(\tan (x+y)=c\)
4 \(\tan \frac{y+c}{a}=\frac{x+y}{a}\)
Differential Equation

87325 The differential equation formed by eliminating \(a\) and \(b\) from the equation \(y=e^{x}(\operatorname{acos} x+b \sin x)\) is

1 \(2 \frac{d^{2} y}{d^{2}}+\frac{d y}{d x}-2 y=0\)
2 \(\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-2 y=0\)
3 \(2 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+2 y=0\)
4 \(\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0\)
Differential Equation

87327 The solution of the differential equation \(y \sin \left(\frac{x}{y}\right) d x=\left\{x \sin \left(\frac{x}{y}\right)-y\right\} d y\) satisfying \(y\left(\frac{\pi}{4}\right)=1\) is

1 \(\cos \frac{x}{y}=\log _{e} y+\frac{1}{\sqrt{2}}\)
2 \(\sin \frac{x}{y}=\log _{e} y+\frac{1}{\sqrt{2}}\)
3 \(\sin \frac{x}{y}=\log _{e} x-\frac{1}{\sqrt{2}}\)
4 \(\cos \frac{x}{y}=-\log _{e} x-\frac{1}{\sqrt{2}}\)
Differential Equation

87323 The general solution of the differential equation \(\left(1+e^{\frac{x}{y}}\right) d x+\left(1-\frac{x}{y}\right) e^{x / y} d y=0\) is \(\quad\) (c is an arbitrary constant)

1 \(x-y e^{\frac{x}{y}}=c\)
2 \(y-x e^{\frac{x}{y}}=c\)
3 \(x y^{\frac{x}{y}} c\)
4 \(y+x e^{\frac{x}{y}}=c\)
Differential Equation

87324 General solution of \((x+y)^{2} \frac{d y}{d x}=a^{2}, a \neq 0\) is ( \(C\) is an arbitrary constant)

1 \(\frac{x}{a}=\tan \frac{y}{a}+c\)
2 \(\tan x y=c\)
3 \(\tan (x+y)=c\)
4 \(\tan \frac{y+c}{a}=\frac{x+y}{a}\)
Differential Equation

87325 The differential equation formed by eliminating \(a\) and \(b\) from the equation \(y=e^{x}(\operatorname{acos} x+b \sin x)\) is

1 \(2 \frac{d^{2} y}{d^{2}}+\frac{d y}{d x}-2 y=0\)
2 \(\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-2 y=0\)
3 \(2 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+2 y=0\)
4 \(\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0\)
Differential Equation

87327 The solution of the differential equation \(y \sin \left(\frac{x}{y}\right) d x=\left\{x \sin \left(\frac{x}{y}\right)-y\right\} d y\) satisfying \(y\left(\frac{\pi}{4}\right)=1\) is

1 \(\cos \frac{x}{y}=\log _{e} y+\frac{1}{\sqrt{2}}\)
2 \(\sin \frac{x}{y}=\log _{e} y+\frac{1}{\sqrt{2}}\)
3 \(\sin \frac{x}{y}=\log _{e} x-\frac{1}{\sqrt{2}}\)
4 \(\cos \frac{x}{y}=-\log _{e} x-\frac{1}{\sqrt{2}}\)
Differential Equation

87323 The general solution of the differential equation \(\left(1+e^{\frac{x}{y}}\right) d x+\left(1-\frac{x}{y}\right) e^{x / y} d y=0\) is \(\quad\) (c is an arbitrary constant)

1 \(x-y e^{\frac{x}{y}}=c\)
2 \(y-x e^{\frac{x}{y}}=c\)
3 \(x y^{\frac{x}{y}} c\)
4 \(y+x e^{\frac{x}{y}}=c\)
Differential Equation

87324 General solution of \((x+y)^{2} \frac{d y}{d x}=a^{2}, a \neq 0\) is ( \(C\) is an arbitrary constant)

1 \(\frac{x}{a}=\tan \frac{y}{a}+c\)
2 \(\tan x y=c\)
3 \(\tan (x+y)=c\)
4 \(\tan \frac{y+c}{a}=\frac{x+y}{a}\)
Differential Equation

87325 The differential equation formed by eliminating \(a\) and \(b\) from the equation \(y=e^{x}(\operatorname{acos} x+b \sin x)\) is

1 \(2 \frac{d^{2} y}{d^{2}}+\frac{d y}{d x}-2 y=0\)
2 \(\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-2 y=0\)
3 \(2 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+2 y=0\)
4 \(\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0\)
Differential Equation

87327 The solution of the differential equation \(y \sin \left(\frac{x}{y}\right) d x=\left\{x \sin \left(\frac{x}{y}\right)-y\right\} d y\) satisfying \(y\left(\frac{\pi}{4}\right)=1\) is

1 \(\cos \frac{x}{y}=\log _{e} y+\frac{1}{\sqrt{2}}\)
2 \(\sin \frac{x}{y}=\log _{e} y+\frac{1}{\sqrt{2}}\)
3 \(\sin \frac{x}{y}=\log _{e} x-\frac{1}{\sqrt{2}}\)
4 \(\cos \frac{x}{y}=-\log _{e} x-\frac{1}{\sqrt{2}}\)
Differential Equation

87323 The general solution of the differential equation \(\left(1+e^{\frac{x}{y}}\right) d x+\left(1-\frac{x}{y}\right) e^{x / y} d y=0\) is \(\quad\) (c is an arbitrary constant)

1 \(x-y e^{\frac{x}{y}}=c\)
2 \(y-x e^{\frac{x}{y}}=c\)
3 \(x y^{\frac{x}{y}} c\)
4 \(y+x e^{\frac{x}{y}}=c\)
Differential Equation

87324 General solution of \((x+y)^{2} \frac{d y}{d x}=a^{2}, a \neq 0\) is ( \(C\) is an arbitrary constant)

1 \(\frac{x}{a}=\tan \frac{y}{a}+c\)
2 \(\tan x y=c\)
3 \(\tan (x+y)=c\)
4 \(\tan \frac{y+c}{a}=\frac{x+y}{a}\)
Differential Equation

87325 The differential equation formed by eliminating \(a\) and \(b\) from the equation \(y=e^{x}(\operatorname{acos} x+b \sin x)\) is

1 \(2 \frac{d^{2} y}{d^{2}}+\frac{d y}{d x}-2 y=0\)
2 \(\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-2 y=0\)
3 \(2 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+2 y=0\)
4 \(\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0\)
Differential Equation

87327 The solution of the differential equation \(y \sin \left(\frac{x}{y}\right) d x=\left\{x \sin \left(\frac{x}{y}\right)-y\right\} d y\) satisfying \(y\left(\frac{\pi}{4}\right)=1\) is

1 \(\cos \frac{x}{y}=\log _{e} y+\frac{1}{\sqrt{2}}\)
2 \(\sin \frac{x}{y}=\log _{e} y+\frac{1}{\sqrt{2}}\)
3 \(\sin \frac{x}{y}=\log _{e} x-\frac{1}{\sqrt{2}}\)
4 \(\cos \frac{x}{y}=-\log _{e} x-\frac{1}{\sqrt{2}}\)