87323
The general solution of the differential equation \(\left(1+e^{\frac{x}{y}}\right) d x+\left(1-\frac{x}{y}\right) e^{x / y} d y=0\) is \(\quad\) (c is an arbitrary constant)
(D) : Given that, \(y=e^{x}(a \cos x+b \sin x)\) On differentiating both sides with respect to \(x\), we get- \(\frac{d y}{d x}=e^{x}(-a \sin x+b \cos x)+e^{x}(a \cos x+b \cos x)\) \(\frac{d y}{d x}-y=e^{x}(-a \sin x+b \cos x)\) Again on differentiating both sides w.r.t. \(\mathrm{x}\), we get- \(\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}=e^{x}(-a \cos x-b \sin x)+e^{x}(-a \sin x+b \cos x)\) \(\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+y=\frac{d y}{d x}-y\) \(\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0\)
AP EAMCET-21.04.2019
Differential Equation
87327
The solution of the differential equation \(y \sin \left(\frac{x}{y}\right) d x=\left\{x \sin \left(\frac{x}{y}\right)-y\right\} d y\) satisfying \(y\left(\frac{\pi}{4}\right)=1\) is
87323
The general solution of the differential equation \(\left(1+e^{\frac{x}{y}}\right) d x+\left(1-\frac{x}{y}\right) e^{x / y} d y=0\) is \(\quad\) (c is an arbitrary constant)
(D) : Given that, \(y=e^{x}(a \cos x+b \sin x)\) On differentiating both sides with respect to \(x\), we get- \(\frac{d y}{d x}=e^{x}(-a \sin x+b \cos x)+e^{x}(a \cos x+b \cos x)\) \(\frac{d y}{d x}-y=e^{x}(-a \sin x+b \cos x)\) Again on differentiating both sides w.r.t. \(\mathrm{x}\), we get- \(\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}=e^{x}(-a \cos x-b \sin x)+e^{x}(-a \sin x+b \cos x)\) \(\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+y=\frac{d y}{d x}-y\) \(\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0\)
AP EAMCET-21.04.2019
Differential Equation
87327
The solution of the differential equation \(y \sin \left(\frac{x}{y}\right) d x=\left\{x \sin \left(\frac{x}{y}\right)-y\right\} d y\) satisfying \(y\left(\frac{\pi}{4}\right)=1\) is
87323
The general solution of the differential equation \(\left(1+e^{\frac{x}{y}}\right) d x+\left(1-\frac{x}{y}\right) e^{x / y} d y=0\) is \(\quad\) (c is an arbitrary constant)
(D) : Given that, \(y=e^{x}(a \cos x+b \sin x)\) On differentiating both sides with respect to \(x\), we get- \(\frac{d y}{d x}=e^{x}(-a \sin x+b \cos x)+e^{x}(a \cos x+b \cos x)\) \(\frac{d y}{d x}-y=e^{x}(-a \sin x+b \cos x)\) Again on differentiating both sides w.r.t. \(\mathrm{x}\), we get- \(\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}=e^{x}(-a \cos x-b \sin x)+e^{x}(-a \sin x+b \cos x)\) \(\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+y=\frac{d y}{d x}-y\) \(\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0\)
AP EAMCET-21.04.2019
Differential Equation
87327
The solution of the differential equation \(y \sin \left(\frac{x}{y}\right) d x=\left\{x \sin \left(\frac{x}{y}\right)-y\right\} d y\) satisfying \(y\left(\frac{\pi}{4}\right)=1\) is
87323
The general solution of the differential equation \(\left(1+e^{\frac{x}{y}}\right) d x+\left(1-\frac{x}{y}\right) e^{x / y} d y=0\) is \(\quad\) (c is an arbitrary constant)
(D) : Given that, \(y=e^{x}(a \cos x+b \sin x)\) On differentiating both sides with respect to \(x\), we get- \(\frac{d y}{d x}=e^{x}(-a \sin x+b \cos x)+e^{x}(a \cos x+b \cos x)\) \(\frac{d y}{d x}-y=e^{x}(-a \sin x+b \cos x)\) Again on differentiating both sides w.r.t. \(\mathrm{x}\), we get- \(\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}=e^{x}(-a \cos x-b \sin x)+e^{x}(-a \sin x+b \cos x)\) \(\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+y=\frac{d y}{d x}-y\) \(\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0\)
AP EAMCET-21.04.2019
Differential Equation
87327
The solution of the differential equation \(y \sin \left(\frac{x}{y}\right) d x=\left\{x \sin \left(\frac{x}{y}\right)-y\right\} d y\) satisfying \(y\left(\frac{\pi}{4}\right)=1\) is