Integrating Factor
Differential Equation

87318 The solution of \(25 \frac{d^{2} y}{d x^{2}}-10 \frac{d y}{d x}+y=0\), \(y(0)=1, y(1)=2 e^{1 / 5}\) is

1 \(y=e^{5 x}+e^{-5 x}\)
2 \(y=(1+x) e^{5 x}\)
3 \(y=(1+x) e^{x / 5}\)
4 \(\mathrm{y}=(1+\mathrm{x}) \mathrm{e}^{-\mathrm{x} / 5}\)
Differential Equation

87319 The integrating factor of the differential equation \(3 x \log _{e} x \frac{d y}{d x}+y=2 \log _{e} x\) is given by

1 \(\left(\log _{\mathrm{e}} \mathrm{x}\right)^{3}\)
2 \(\log _{e}\left(\log _{e} x\right)\)
3 \(\log _{\mathrm{e}} \mathrm{x}\)
4 \(\left(\log _{e} x\right)^{1 / 3}\)
Differential Equation

87320 A solution of the differential equation
\(\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0\) is :

1 \(y=2 x\)
2 \(y=-2 x\)
3 \(y=2 x-4\)
4 \(y=2 x+4\)
Differential Equation

87321 Solution of \((x+y)^{2} \frac{d y}{d x}=a^{2}\) (' \(a\) ' being a constant) is

1 \(\frac{(x+y)}{a}=\tan \frac{y+C}{a}, C\) is an arbitrary constant
2 \(x y=a \tan C x, C\) is an arbitrary constant
3 \(\frac{x}{a}=\tan \frac{y}{C}, C\) is an arbitrary constant
4 \(x y=\tan (x+C), C\) is an arbitrary constant
Differential Equation

87322 If \(y=\mathrm{e}^{\mathrm{msin}^{-1} \mathrm{x}}\) then \(\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-k y=0\), where \(k\) is equal to

1 \(\mathrm{m}^{2}\)
2 2
3 -1
4 \(-\mathrm{m}^{2}\)
Differential Equation

87318 The solution of \(25 \frac{d^{2} y}{d x^{2}}-10 \frac{d y}{d x}+y=0\), \(y(0)=1, y(1)=2 e^{1 / 5}\) is

1 \(y=e^{5 x}+e^{-5 x}\)
2 \(y=(1+x) e^{5 x}\)
3 \(y=(1+x) e^{x / 5}\)
4 \(\mathrm{y}=(1+\mathrm{x}) \mathrm{e}^{-\mathrm{x} / 5}\)
Differential Equation

87319 The integrating factor of the differential equation \(3 x \log _{e} x \frac{d y}{d x}+y=2 \log _{e} x\) is given by

1 \(\left(\log _{\mathrm{e}} \mathrm{x}\right)^{3}\)
2 \(\log _{e}\left(\log _{e} x\right)\)
3 \(\log _{\mathrm{e}} \mathrm{x}\)
4 \(\left(\log _{e} x\right)^{1 / 3}\)
Differential Equation

87320 A solution of the differential equation
\(\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0\) is :

1 \(y=2 x\)
2 \(y=-2 x\)
3 \(y=2 x-4\)
4 \(y=2 x+4\)
Differential Equation

87321 Solution of \((x+y)^{2} \frac{d y}{d x}=a^{2}\) (' \(a\) ' being a constant) is

1 \(\frac{(x+y)}{a}=\tan \frac{y+C}{a}, C\) is an arbitrary constant
2 \(x y=a \tan C x, C\) is an arbitrary constant
3 \(\frac{x}{a}=\tan \frac{y}{C}, C\) is an arbitrary constant
4 \(x y=\tan (x+C), C\) is an arbitrary constant
Differential Equation

87322 If \(y=\mathrm{e}^{\mathrm{msin}^{-1} \mathrm{x}}\) then \(\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-k y=0\), where \(k\) is equal to

1 \(\mathrm{m}^{2}\)
2 2
3 -1
4 \(-\mathrm{m}^{2}\)
Differential Equation

87318 The solution of \(25 \frac{d^{2} y}{d x^{2}}-10 \frac{d y}{d x}+y=0\), \(y(0)=1, y(1)=2 e^{1 / 5}\) is

1 \(y=e^{5 x}+e^{-5 x}\)
2 \(y=(1+x) e^{5 x}\)
3 \(y=(1+x) e^{x / 5}\)
4 \(\mathrm{y}=(1+\mathrm{x}) \mathrm{e}^{-\mathrm{x} / 5}\)
Differential Equation

87319 The integrating factor of the differential equation \(3 x \log _{e} x \frac{d y}{d x}+y=2 \log _{e} x\) is given by

1 \(\left(\log _{\mathrm{e}} \mathrm{x}\right)^{3}\)
2 \(\log _{e}\left(\log _{e} x\right)\)
3 \(\log _{\mathrm{e}} \mathrm{x}\)
4 \(\left(\log _{e} x\right)^{1 / 3}\)
Differential Equation

87320 A solution of the differential equation
\(\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0\) is :

1 \(y=2 x\)
2 \(y=-2 x\)
3 \(y=2 x-4\)
4 \(y=2 x+4\)
Differential Equation

87321 Solution of \((x+y)^{2} \frac{d y}{d x}=a^{2}\) (' \(a\) ' being a constant) is

1 \(\frac{(x+y)}{a}=\tan \frac{y+C}{a}, C\) is an arbitrary constant
2 \(x y=a \tan C x, C\) is an arbitrary constant
3 \(\frac{x}{a}=\tan \frac{y}{C}, C\) is an arbitrary constant
4 \(x y=\tan (x+C), C\) is an arbitrary constant
Differential Equation

87322 If \(y=\mathrm{e}^{\mathrm{msin}^{-1} \mathrm{x}}\) then \(\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-k y=0\), where \(k\) is equal to

1 \(\mathrm{m}^{2}\)
2 2
3 -1
4 \(-\mathrm{m}^{2}\)
Differential Equation

87318 The solution of \(25 \frac{d^{2} y}{d x^{2}}-10 \frac{d y}{d x}+y=0\), \(y(0)=1, y(1)=2 e^{1 / 5}\) is

1 \(y=e^{5 x}+e^{-5 x}\)
2 \(y=(1+x) e^{5 x}\)
3 \(y=(1+x) e^{x / 5}\)
4 \(\mathrm{y}=(1+\mathrm{x}) \mathrm{e}^{-\mathrm{x} / 5}\)
Differential Equation

87319 The integrating factor of the differential equation \(3 x \log _{e} x \frac{d y}{d x}+y=2 \log _{e} x\) is given by

1 \(\left(\log _{\mathrm{e}} \mathrm{x}\right)^{3}\)
2 \(\log _{e}\left(\log _{e} x\right)\)
3 \(\log _{\mathrm{e}} \mathrm{x}\)
4 \(\left(\log _{e} x\right)^{1 / 3}\)
Differential Equation

87320 A solution of the differential equation
\(\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0\) is :

1 \(y=2 x\)
2 \(y=-2 x\)
3 \(y=2 x-4\)
4 \(y=2 x+4\)
Differential Equation

87321 Solution of \((x+y)^{2} \frac{d y}{d x}=a^{2}\) (' \(a\) ' being a constant) is

1 \(\frac{(x+y)}{a}=\tan \frac{y+C}{a}, C\) is an arbitrary constant
2 \(x y=a \tan C x, C\) is an arbitrary constant
3 \(\frac{x}{a}=\tan \frac{y}{C}, C\) is an arbitrary constant
4 \(x y=\tan (x+C), C\) is an arbitrary constant
Differential Equation

87322 If \(y=\mathrm{e}^{\mathrm{msin}^{-1} \mathrm{x}}\) then \(\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-k y=0\), where \(k\) is equal to

1 \(\mathrm{m}^{2}\)
2 2
3 -1
4 \(-\mathrm{m}^{2}\)
Differential Equation

87318 The solution of \(25 \frac{d^{2} y}{d x^{2}}-10 \frac{d y}{d x}+y=0\), \(y(0)=1, y(1)=2 e^{1 / 5}\) is

1 \(y=e^{5 x}+e^{-5 x}\)
2 \(y=(1+x) e^{5 x}\)
3 \(y=(1+x) e^{x / 5}\)
4 \(\mathrm{y}=(1+\mathrm{x}) \mathrm{e}^{-\mathrm{x} / 5}\)
Differential Equation

87319 The integrating factor of the differential equation \(3 x \log _{e} x \frac{d y}{d x}+y=2 \log _{e} x\) is given by

1 \(\left(\log _{\mathrm{e}} \mathrm{x}\right)^{3}\)
2 \(\log _{e}\left(\log _{e} x\right)\)
3 \(\log _{\mathrm{e}} \mathrm{x}\)
4 \(\left(\log _{e} x\right)^{1 / 3}\)
Differential Equation

87320 A solution of the differential equation
\(\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0\) is :

1 \(y=2 x\)
2 \(y=-2 x\)
3 \(y=2 x-4\)
4 \(y=2 x+4\)
Differential Equation

87321 Solution of \((x+y)^{2} \frac{d y}{d x}=a^{2}\) (' \(a\) ' being a constant) is

1 \(\frac{(x+y)}{a}=\tan \frac{y+C}{a}, C\) is an arbitrary constant
2 \(x y=a \tan C x, C\) is an arbitrary constant
3 \(\frac{x}{a}=\tan \frac{y}{C}, C\) is an arbitrary constant
4 \(x y=\tan (x+C), C\) is an arbitrary constant
Differential Equation

87322 If \(y=\mathrm{e}^{\mathrm{msin}^{-1} \mathrm{x}}\) then \(\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-k y=0\), where \(k\) is equal to

1 \(\mathrm{m}^{2}\)
2 2
3 -1
4 \(-\mathrm{m}^{2}\)