Order and Degree of Differential Equation
Differential Equation

87127 The degree of the differential equation
\(x=1+\left(\frac{d y}{d x}\right)+\frac{1}{2 !}\left(\frac{d y}{d x}\right)^{2}+\frac{1}{3 !}\left(\frac{d y}{d x}\right)^{3}+\ldots \ldots\)

1 3
2 2
3 1
4 Not defined
Differential Equation

87128 If \(1, \omega, \omega^{2}\) are cube roots of unity,
then \(\left|\begin{array}{ccc}1& \omega^{n}& \omega^{2 n}\\
\omega^{2 n} &1& \omega^{n}\\
\omega^{n} &\omega^{2 n}& 1\end{array}\right|\) has value

1 0
2 \(\omega\)
3 \(\omega^{2}\)
4 \(\omega+\omega^{2}\)
Differential Equation

87130 The differential equation of all parabolas whose axis of symmetry is parallel to \(\mathrm{x}\)-axis is of order

1 2
2 3
3 1
4 4
Differential Equation

87131 The degree of the differential equation satisfying \(\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=\mathbf{a}(\mathbf{x}-\mathbf{y})\) is

1 1
2 3
3 2
4 none of these
Differential Equation

87127 The degree of the differential equation
\(x=1+\left(\frac{d y}{d x}\right)+\frac{1}{2 !}\left(\frac{d y}{d x}\right)^{2}+\frac{1}{3 !}\left(\frac{d y}{d x}\right)^{3}+\ldots \ldots\)

1 3
2 2
3 1
4 Not defined
Differential Equation

87128 If \(1, \omega, \omega^{2}\) are cube roots of unity,
then \(\left|\begin{array}{ccc}1& \omega^{n}& \omega^{2 n}\\
\omega^{2 n} &1& \omega^{n}\\
\omega^{n} &\omega^{2 n}& 1\end{array}\right|\) has value

1 0
2 \(\omega\)
3 \(\omega^{2}\)
4 \(\omega+\omega^{2}\)
Differential Equation

87130 The differential equation of all parabolas whose axis of symmetry is parallel to \(\mathrm{x}\)-axis is of order

1 2
2 3
3 1
4 4
Differential Equation

87131 The degree of the differential equation satisfying \(\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=\mathbf{a}(\mathbf{x}-\mathbf{y})\) is

1 1
2 3
3 2
4 none of these
Differential Equation

87127 The degree of the differential equation
\(x=1+\left(\frac{d y}{d x}\right)+\frac{1}{2 !}\left(\frac{d y}{d x}\right)^{2}+\frac{1}{3 !}\left(\frac{d y}{d x}\right)^{3}+\ldots \ldots\)

1 3
2 2
3 1
4 Not defined
Differential Equation

87128 If \(1, \omega, \omega^{2}\) are cube roots of unity,
then \(\left|\begin{array}{ccc}1& \omega^{n}& \omega^{2 n}\\
\omega^{2 n} &1& \omega^{n}\\
\omega^{n} &\omega^{2 n}& 1\end{array}\right|\) has value

1 0
2 \(\omega\)
3 \(\omega^{2}\)
4 \(\omega+\omega^{2}\)
Differential Equation

87130 The differential equation of all parabolas whose axis of symmetry is parallel to \(\mathrm{x}\)-axis is of order

1 2
2 3
3 1
4 4
Differential Equation

87131 The degree of the differential equation satisfying \(\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=\mathbf{a}(\mathbf{x}-\mathbf{y})\) is

1 1
2 3
3 2
4 none of these
Differential Equation

87127 The degree of the differential equation
\(x=1+\left(\frac{d y}{d x}\right)+\frac{1}{2 !}\left(\frac{d y}{d x}\right)^{2}+\frac{1}{3 !}\left(\frac{d y}{d x}\right)^{3}+\ldots \ldots\)

1 3
2 2
3 1
4 Not defined
Differential Equation

87128 If \(1, \omega, \omega^{2}\) are cube roots of unity,
then \(\left|\begin{array}{ccc}1& \omega^{n}& \omega^{2 n}\\
\omega^{2 n} &1& \omega^{n}\\
\omega^{n} &\omega^{2 n}& 1\end{array}\right|\) has value

1 0
2 \(\omega\)
3 \(\omega^{2}\)
4 \(\omega+\omega^{2}\)
Differential Equation

87130 The differential equation of all parabolas whose axis of symmetry is parallel to \(\mathrm{x}\)-axis is of order

1 2
2 3
3 1
4 4
Differential Equation

87131 The degree of the differential equation satisfying \(\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=\mathbf{a}(\mathbf{x}-\mathbf{y})\) is

1 1
2 3
3 2
4 none of these