87079 The order of the differential equation y=C1eC2+x+C3eC4+x is
(A) : Given, differential equationy=C1eC2+x+C3eC4+x⇒y=C1eC2⋅ex+C3eC4⋅exy=(C1eC2+C3eC4)ex⇒y=kex(Where, k=C1eC2+C3eC4 )dydx=kex⇒dydx=y⇒dydx−y=0Hence, order is one.
87080 The degree and order of the differential equation d2ydx2=1+(dydx)23 respectively are
(B) : Given, differential equation -d2ydx2=1+(dydx)23(d2ydx2)3=(1+(dydx)2)⇒(d2ydx2)3−(dydx)2−1=0Hence order =2Degree =3
87082 The order and degree of the differentialequation y=xdydx+2dydx is
(A) : Given, y=xdydx+2dydxydydx=x(dydx)2+2⇒x(dydx)2−ydydx+2=0Hence order →1 and degree 2
87106 The solution of the equation dydx=1−y21−x2 is
(A) : Given dydx=1−y21−x2dy1−y2=dx1−x2Integrating both sides, we get -sin−1y=sin−1x+csin−1y−sin−1x=c
87135 Find the degree of the differential equationy32/3+2+3y2+y1=0
(B) : Given, differential equation,y32/3+2+3y3+y1=0Then, it is also written as-(d3ydx3)2/3+2+3(d2ydx2)+dydx=0(d3ydx3)2/3=−[(d2ydx2)×3+dydx+2](d3ydx3)2=−[3×d2ydx2+dydx+2]3So, the degree of differential equation is 2 and order is 3 .