Area Bounded by Miscellaneous Curves and Shapes
Application of the Integrals

87070 The area of the region
\(\left[(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right] \text { is; }\)

1 \(\frac{\pi}{5}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi^{2}}{3}\)
4 \(\frac{\pi}{4}-\frac{1}{2}\)
Application of the Integrals

87071 The area enclosed by the curves \(|y+x| \leq 1\), \(|y-x| \leq 1\) and \(2 x^{2}+2 y^{2}=1\) is

1 \(\left(2+\frac{\pi}{2}\right)\) sq units
2 \(\left(2-\frac{\pi}{2}\right)\) sq units
3 \(\left(3+\frac{\pi}{2}\right)\) sq units
4 \(\left(3-\frac{\pi}{4}\right)\) sq units
Application of the Integrals

87072 The maximum area of a rectangle that can be inscribed in a circle of radius 2 units is

1 8 sq units
2 4 sq units
3 \(8 \pi\) sq units
4 \(4 \pi\) sq units
Application of the Integrals

87073 The perimeter of a sector is constant. If its area is to be maximum, then sectorial angle is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(4^{\mathrm{C}}\)
4 \(2^{\mathrm{C}}\)
Application of the Integrals

87070 The area of the region
\(\left[(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right] \text { is; }\)

1 \(\frac{\pi}{5}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi^{2}}{3}\)
4 \(\frac{\pi}{4}-\frac{1}{2}\)
Application of the Integrals

87071 The area enclosed by the curves \(|y+x| \leq 1\), \(|y-x| \leq 1\) and \(2 x^{2}+2 y^{2}=1\) is

1 \(\left(2+\frac{\pi}{2}\right)\) sq units
2 \(\left(2-\frac{\pi}{2}\right)\) sq units
3 \(\left(3+\frac{\pi}{2}\right)\) sq units
4 \(\left(3-\frac{\pi}{4}\right)\) sq units
Application of the Integrals

87072 The maximum area of a rectangle that can be inscribed in a circle of radius 2 units is

1 8 sq units
2 4 sq units
3 \(8 \pi\) sq units
4 \(4 \pi\) sq units
Application of the Integrals

87073 The perimeter of a sector is constant. If its area is to be maximum, then sectorial angle is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(4^{\mathrm{C}}\)
4 \(2^{\mathrm{C}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Application of the Integrals

87070 The area of the region
\(\left[(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right] \text { is; }\)

1 \(\frac{\pi}{5}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi^{2}}{3}\)
4 \(\frac{\pi}{4}-\frac{1}{2}\)
Application of the Integrals

87071 The area enclosed by the curves \(|y+x| \leq 1\), \(|y-x| \leq 1\) and \(2 x^{2}+2 y^{2}=1\) is

1 \(\left(2+\frac{\pi}{2}\right)\) sq units
2 \(\left(2-\frac{\pi}{2}\right)\) sq units
3 \(\left(3+\frac{\pi}{2}\right)\) sq units
4 \(\left(3-\frac{\pi}{4}\right)\) sq units
Application of the Integrals

87072 The maximum area of a rectangle that can be inscribed in a circle of radius 2 units is

1 8 sq units
2 4 sq units
3 \(8 \pi\) sq units
4 \(4 \pi\) sq units
Application of the Integrals

87073 The perimeter of a sector is constant. If its area is to be maximum, then sectorial angle is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(4^{\mathrm{C}}\)
4 \(2^{\mathrm{C}}\)
Application of the Integrals

87070 The area of the region
\(\left[(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right] \text { is; }\)

1 \(\frac{\pi}{5}\)
2 \(\frac{\pi}{4}\)
3 \(\frac{\pi^{2}}{3}\)
4 \(\frac{\pi}{4}-\frac{1}{2}\)
Application of the Integrals

87071 The area enclosed by the curves \(|y+x| \leq 1\), \(|y-x| \leq 1\) and \(2 x^{2}+2 y^{2}=1\) is

1 \(\left(2+\frac{\pi}{2}\right)\) sq units
2 \(\left(2-\frac{\pi}{2}\right)\) sq units
3 \(\left(3+\frac{\pi}{2}\right)\) sq units
4 \(\left(3-\frac{\pi}{4}\right)\) sq units
Application of the Integrals

87072 The maximum area of a rectangle that can be inscribed in a circle of radius 2 units is

1 8 sq units
2 4 sq units
3 \(8 \pi\) sq units
4 \(4 \pi\) sq units
Application of the Integrals

87073 The perimeter of a sector is constant. If its area is to be maximum, then sectorial angle is

1 \(\frac{\pi}{6}\)
2 \(\frac{\pi}{4}\)
3 \(4^{\mathrm{C}}\)
4 \(2^{\mathrm{C}}\)