86803
The area of the triangle formed by the lines joining vertex of the parabola \(x^{2}=12 y\) to the extremities of its latus rectum is
1 38 sq.units
2 28 sq.units
3 12 sq.units
4 18 sq.units
Explanation:
(D) : Given parabola, \(x^{2}=12 y\) Compare with equation, \(x^{2}=4 a y\) We get, \(4 \mathrm{a}=12\) \(a=3\) Length of latus rectum \((A B)=12\) So, coordinates of focus \(=(0,3)\) Area of \(\triangle \mathrm{OAB}=\frac{1}{2} \times \mathrm{OM} \times \mathrm{AB}=\frac{1}{2} \times 3 \times 12=18\) sq. units.
86803
The area of the triangle formed by the lines joining vertex of the parabola \(x^{2}=12 y\) to the extremities of its latus rectum is
1 38 sq.units
2 28 sq.units
3 12 sq.units
4 18 sq.units
Explanation:
(D) : Given parabola, \(x^{2}=12 y\) Compare with equation, \(x^{2}=4 a y\) We get, \(4 \mathrm{a}=12\) \(a=3\) Length of latus rectum \((A B)=12\) So, coordinates of focus \(=(0,3)\) Area of \(\triangle \mathrm{OAB}=\frac{1}{2} \times \mathrm{OM} \times \mathrm{AB}=\frac{1}{2} \times 3 \times 12=18\) sq. units.
86803
The area of the triangle formed by the lines joining vertex of the parabola \(x^{2}=12 y\) to the extremities of its latus rectum is
1 38 sq.units
2 28 sq.units
3 12 sq.units
4 18 sq.units
Explanation:
(D) : Given parabola, \(x^{2}=12 y\) Compare with equation, \(x^{2}=4 a y\) We get, \(4 \mathrm{a}=12\) \(a=3\) Length of latus rectum \((A B)=12\) So, coordinates of focus \(=(0,3)\) Area of \(\triangle \mathrm{OAB}=\frac{1}{2} \times \mathrm{OM} \times \mathrm{AB}=\frac{1}{2} \times 3 \times 12=18\) sq. units.
86803
The area of the triangle formed by the lines joining vertex of the parabola \(x^{2}=12 y\) to the extremities of its latus rectum is
1 38 sq.units
2 28 sq.units
3 12 sq.units
4 18 sq.units
Explanation:
(D) : Given parabola, \(x^{2}=12 y\) Compare with equation, \(x^{2}=4 a y\) We get, \(4 \mathrm{a}=12\) \(a=3\) Length of latus rectum \((A B)=12\) So, coordinates of focus \(=(0,3)\) Area of \(\triangle \mathrm{OAB}=\frac{1}{2} \times \mathrm{OM} \times \mathrm{AB}=\frac{1}{2} \times 3 \times 12=18\) sq. units.